Refine Your Search



Search Results

Technical Paper

Model-Based Control and Cylinder-Event-Based Logic for an Ultra-Low Emissions Vehicle

Improvements in several areas are required to convert current technology light-duty vehicles into low-emissions vehicles suitable for meeting California's Ultra-Low Emissions Vehicle (ULEV) standards. This paper discusses one of those areas, the engine and aftertreatment control system algorithms. The approach was to use model-based air and fuel flow calculations to maintain accurate air-fuel ratio control, and to interface the aftertreatment requirements with engine air-fuel ratio control during the cold- and hot-start parts of the cycle. This approach was applied to a 1993 Ford Taurus operating on Ed85 (85% denatured alcohol, 15% gasoline).
Technical Paper

Performance of Different Cell Structure Converters A Total Systems Perspective

The objective of this effort was to develop an understanding of how different converter substrate cell structures impact tailpipe emissions and pressure drop from a total systems perspective. The cell structures studied were the following: The catalyst technologies utilized were a new technology palladium only catalyst in combination with a palladium/rhodium catalyst. A 4.0-liter, 1997 Jeep Cherokee with a modified calibration was chosen as the test platform for performing the FTP test. The experimental design focused on quantifying emissions performance as a function of converter volume for the different cell structures. The results from this study demonstrate that the 93 square cell/cm2 structure has superior performance versus the 62 square cell/cm2 structure and the 46 triangle cell/cm2 structure when the converter volumes were relatively small. However, as converter volume increases the emissions differences diminish.
Technical Paper

Lower Explosion Limits and Compositions of Middle Distillate Fuel Vapors

Lower explosion limits (LEL) and the chemical compositions of JP-8, Jet A and JP-5 fuel vapors were determined in a sealed combustion vessel equipped with a spark igniter, a gas-sampling probe, and sensors to measure pressure rise and fuel temperature. Ignition was detected by pressure rise in the vessel. Pressure rises up to 60 psig were observed near the flash points of the test fuels. The fuel vapors in the vessel ignited from as much as 11°F below flash-point measurements. Detailed hydrocarbon speciation of the fuel vapors was performed using high-resolution gas chromatography. Over 300 hydrocarbons were detected in the vapors phase. The average molecular weight, hydrogen to carbon ratio, and LEL of the fuel vapors were determined from the concentration measurements. The jet fuel vapors had molecular weights ranging from 114 to 132, hydrogen to carbon ratios of approximately 1.93, and LELs comparable to pure hydrocarbons of similar molecular weight.
Technical Paper

Mixture Preparation Measurements

A technique was demonstrated that can quantify the state of mixture preparation during the critical periods of ignition and very early flame development in a “production” spark-ignited engine. To determine the degree of stratification and vaporization two fast-response hydrocarbon (HC) probes were placed in a specially adapted spark plug. Data from the HC analyzer was correlated with cylinder pressure data to relate changes in mixture preparation to classic engine measures, such as indicated mean effective pressure (IMEP) and ignition delay.
Technical Paper

Investigation of Diesel Spray Structure and Spray/Wall Interactions in a Constant Volume Pressure Vessel

High-speed movie films, and laser-diffraction drop sizing were used to evaluate the structure, penetration rate, cone angle, and drop size distribution of diesel sprays in a constant volume pressure vessel. As further means of evaluating the data, comparisons are made between the film measurements, and calculations from a dense gas jet model. In addition to the high-speed film data that describes the overall structure of the spray as a function of time, a laser diffraction instrument was used to measure drop size distribution through a cross-section of the spray. In terms of the growth of the total spray volume (a rough measure of the amount of air entrained in the spray), spray impingement causes an initial delay, but generally the same overall growth rate as an equivalent unimpeded spray. Agreement between measurements and calculations is excellent for a diesel spray with a 0.15 mm D orifice and relatively high injection pressures.
Technical Paper

Injection Pressure and Intake Air Density Effects on Ignition and Combustion in a 4-Valve Diesel Engine

Diesel engine optimization for low emissions and high efficiency involves the use of very high injection pressures. It was generally thought that increased injection pressures lead to improved fuel air mixing due to increased atomization in the fuel jet. Injection experiments in a high-pressure, high-temperature flow reactor indicated, however, that high injection pressures, in excess of 150 MPa, leads to greatly increased penetration rates and significant wall impingement. An endoscope system was used to obtain movies of combustion in a modern, 4-valve, heavy-duty diesel engine. Movies were obtained at different speeds, loads, injection pressures, and intake air pressures. The movies indicated that high injection pressure, coupled with high intake air density leads to very short ignition delay times, ignition close to the nozzle, and burning of the plumes as they traverse the combustion chamber.
Technical Paper

Effects of Increased Altitude on Heavy-Duty Diesel Engine Emissions

Concern over emissions from heavy-duty diesel engines at high altitudes prompted an investigation into the effects of increasing altitude on gaseous and particulate emissions. On behalf of the Engine Manufacturers Association, emissions from a Detroit Diesel Corporation Series 60 at local test conditions (barometer 98.9 kPa), and two simulated altitudes, Denver (82.6 kPa) and Mexico City (77.9 kPa) were examined using a special altitude simulation CVS. Transient torque output and full load steady-state torque, for this turbocharged aftercooled engine, decreased slightly with increasing altitude. Although, the DDC Series 60 compensates for variation in barometer, transient composite emissions of HC, CO, CO2, smoke, and particulate matter generally increased with increasing altitude for both transient and steady-state operation.
Technical Paper

Design of an Emergency Tire Inflation System for Long Haul Trucks

An Emergency Tire Inflation System (ETIS) designed for use on commercial trucks was evaluated and tested. The ETIS is provided in kit form and designed to be installed by a truck operator to provide emergency air to inflate a low or punctured tire on tractor drive axles. The ETIS will continue to supply air to the tire until the system pressure falls below a safe air pressure level. The system is designed to allow the rig to be driven 500 miles to a tire repair station or to a safe location where tire repair service is available. The installation kit (Figure 1), which can fit under a truck seat, includes all the necessary equipment to install the system on the most common drive axles. The ETIS supplies air to the under-inflated tire through a previously qualified1 Rotary Union design. The Rotary Union is attached to the axle flange of the drive axle by a threaded adapter and two adjustable links that allow the Rotary Union to be placed at the center of rotation of the axle.
Technical Paper

Design Improvements of an Automatic Tire Inflation System for Long Haul Trucks

An Automatic Tire Inflation System (ATIS), specifically designed for use on commercial long haul trailers underwent complete testing and evaluation in 1993/1994.1 Testing and evaluation included a field test of a prototype system and a controlled laboratory evaluation of the Rotary Union which is the only component subject to wear. The testing of the prototype system indicated that design improvements were necessary before the system could be installed in fleet operations. The design improvements were completed and field installation of production ATIS began. The design improvements were intended to improve overall system durability, decrease installation time, to have less effect on the axle structure than the original design, implement the use of SAE or DOT Approved pressure components and increase overall dependability of the system. ATIS systems have now been developed and tested for most domestic trailer axle configurations.
Technical Paper

Engine and Constant Volume Bomb Studies of Diesel ignition and Combustion

Changing fuel quality, increasingly stringent exhaust emission standards, demands for higher efficiency, and the trend towards higher specific output, all contribute to the need for a better understanding of the ignition process in diesel engines. In addition to the impact on the combustion process and the resulting performance and emissions, the ignition process controls the startability of the engine, which, in turn, governs the required compressions ratio and several of the other engine design parameters. The importance of the ignition process is reflected in the fact that the only combustion property that is specified for diesel fuel is the ignition delay time as indicated by the cetane number. The objective of the work described in this paper was to determine the relationship between the ignition process as it occurs in an actual engine, to ignition in a constant volume combustion bomb.
Technical Paper

Effects of Different Injector Hole Shapes on Diesel Sprays

Twelve different hole shapes for diesel injector tips were characterized with DF-2 diesel fuel for spray cone angle over a range of injection pressures from 21 MPa (3 kpsi) to 69 MPa (10 kpsi). A baseline and two of the most radical designs were also tested for drop-size distribution and liquid volume fraction (liquid fuel-air ratio) over a range of pressures from 41 MPa (6 kpsi) to 103 MPa (15 kpsi). All hole shapes were circular in cross-section with minimum diameters of 0.4 mm (0.016 in.), and included converging and diverging hole shapes. Overall hole lengths were constant at 2.5 mm (0.098 in.), for an L/d of 6.2. However, the effective L/d may have been less for some of the convergent and divergent shapes.
Technical Paper

Emissions Measurements in a Steady Combusting Spray Simulating the Diesel Combustion Chamber

In-cylinder control of particulate emissions in a diesel engine depends on careful control and understanding of the fuel injection and air/fuel mixing process. It is extremely difficult to measure physical parameters of the injection and mixing process in an operating engine, but it is possible to simulate some diesel combustion chamber conditions in a steady flow configuration whose characteristics can be more easily probed. This program created a steady flow environment in which air-flow and injection sprays were characterized under non-combusting conditions, and emissions measurements were made under combusting conditions. A limited test matrix was completed in which the following observations were made. Grid-generated air turbulence decreased particulates, CO, and unburned hydrocarbons, while CO2 and NOx levels were increased. The turbulence accelerated combustion, resulting in more complete combustion and higher temperatures at the measurement location.
Technical Paper

REDSOD - A New Concept in Earthmoving

REDSOD, an acronym for Repetitive Explosive Device for Soil Displacement, utilizes the energy generated within a combustion chamber by the combustion of compressed air and a hydrocarbon fuel to displace and move soil or material. An integral wedge-shaped base shoe with a large exhaust opening in its top surface is pushed into a soil overburden at depths up to 5 ft or more by a transporting vehicle. When the combustion chamber pressure has reached a maximum value, the hot, high pressure gases are released through the exhaust opening under the soil overburden. The soil is disaggregated and displaced up and out of the excavation. Deflectors can turn the direction of the soil's trajectory to deliver it to one side of the excavation. A greatly increased productivity per unit of equipment is possible over conventional earthmoving means.
Technical Paper

Piston-Turbine-Compound Engine — A Design and Performance Analysis

Exhaust heat utilization for internal combustion engines has centered around turbosupercharging in recent years, neglecting the promising field of compounding a piston engine with a gas turbine in which, unlike turbocharging, turbine power is fed back to the engine crankshaft. The piston engine can cope with high gas pressure and temperature, whereas the gas turbine can efficiently utilize the energy at relatively low pressure and temperature and large volume flows. By compounding, this-piston engine will handle the high pressure, high temperature phase of the combustion cycle and extend the expansion ratio of the gases to atmospheric pressure by completing the low pressure, low temperature phase in the gas turbine. The marriage of the two engines will result in an outstanding power package with the highest thermal efficiency possible.
Technical Paper

Synthetic Fuel Operation in a Heavy Duty Diesel Engine

A heavy duty (150 kW) diesel engine was tested to determine operational problems while running on minimally processed synthetic fuels. A reference No. 2 diesel fuel was compared with liquid products derived from shale, tar sands, and coal. Information on the engine setup and test procedure is presented. The test results include engine power, thermal efficiency, ignition delay, gaseous and particulate emissions, smoke opacity, cylinder pressure, and heat release data. Cold start data at 0°C and −20° C and idle deposit test results are also presented. These data should help to determine future engine modifications to enhance synfuel engine performance.
Technical Paper

Air-Assisted Direct Injection Diesel Investigations

Enhancement of fuel/air mixing is one path towards enabling future diesel engines to increase efficiency and control emissions. Air-assist fuel injections have shown potential for low pressure applications and the current work aims to extend air-assist feasibility understanding to high pressure environments. Analyses were completed and carried out for traditional high pressure fuel-only, internal air-assist, and external air-assist fuel/air mixing processes. A combination of analytical 0-D theory and 3D CFD were used to help understand the processes and guide the design of the air-assisted setup. The internal air-assisted setup was determined to have excellent liquid fuel vaporization, but poorer fuel dispersion than the traditional high-pressure fuel injections.
Technical Paper

Numerical and Experimental Characterization of the Dual-Fuel Combustion Process in an Optically Accessible Engine

The dual-fuel combustion process of ethanol and n-heptane was characterized experimentally in an optically accessible engine and numerically through a chemical kinetic 3D-CFD investigation. Previously reported formaldehyde PLIF distributions were used as a tracer of low-temperature oxidation of straight-chained hydrocarbons and the numerical results were observed to be in agreement with the experimental data. The numerical and experimental evidence suggests that a change in the speed of flame propagation is responsible for the observed behavior of the dual-fuel combustion, where the energy release duration is increased and the maximum rate of pressure rise is decreased. Further, an explanation is provided for the asymmetrical energy release profile reported in literature which has been previously attributed to an increase in the diffusion-controlled combustion phase.
Technical Paper

Parametric Study and Secondary Circuit Model Calibration Using Spark Calorimeter Testing

The presented work describes how spark calorimeter testing was used for parametric study and secondary circuit model calibration. Tests were conducted at different pressures, sparkplug gaps and supplied primary energies. The conversion efficiency increases and the spark duration decreases when the gas pressure or the sparkplug gap size is increased. Both gas pressure and sparkplug gas size increase the positive column voltage which represents part of the electrical energy delivered to the gas. The opposite direction occurs when the supplied primary energy is increased. The testing results were then used to calibrate the secondary circuit model which consisted of the sparkplug, the sparkplug gap and the secondary wiring. A step-by-step method was used to calibrate the three constants of the model to match the calculated delivered energy with test data during arc / glow phase.
Technical Paper

Transient Control of a Dedicated EGR Engine

Southwest Research Institute (SwRI) has successfully demonstrated the cooled EGR concept via the High Efficiency Dilute Gasoline Engine (HEDGE) consortium. Dilution of intake charge provides three significant benefits - (1) Better Cycle Efficiency (2) Knock Resistance and (3) Lower NOx/PM Emissions. But EGR dilution also poses challenges in terms of combustion stability, condensation and power density. The Dedicated EGR (D-EGR) concept brings back some of the stability lost due to EGR dilution by introducing reformates such as CO and H2 into the intake charge. Control of air, EGR, fuel, and ignition remains a challenge to realizing the aforementioned benefits without sacrificing performance and drivability. This paper addresses the DEGR solution from a controls standpoint. SwRI has been developing a unified framework for controlling a generic combustion engine (gasoline, diesel, dual-fuel natural gas etc.).
Technical Paper

A Parallel Hybrid Drivetrain

Next generation vehicles are under environmental and economic pressure to reduce emissions and increase fuel economy, while maintaining the same ride and performance characteristics of present day combustion engine automobiles. This has prompted researchers to investigate hybrid vehicles as one possible solution to this challenge. At Southwest Research Institute (SwRI), a unique parallel hybrid drivetrain was designed and prototyped. This hybrid drivetrain alleviates the disadvantages of series hybrid drivetrains by directly coupling the driving wheels to two power sources, namely an engine and an electric motor. At the same time, the design allows the engine speed to be decoupled from the vehicle speed, allowing the engine to operate at its most efficient state. This paper describes the drivetrain, its components, and the test stand that was assembled to test the parallel hybrid drivetrain.