Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Testing of a Plastic Melt Waste Compactor Designed for Human Space Exploration Missions

2009-07-12
2009-01-2363
Significant progress has been made at NASA Ames Research Center in the development of a heat melt compaction device called the Plastic Melt Waste Compactor (PMWC). The PMWC was designed to process wet and dry wastes generated on human space exploration missions. The wastes have a plastic content typically greater than twenty percent. The PMWC removes the water from the waste, reduces the volume, and encapsulates it by melting the plastic constituent of the waste. The PMWC is capable of large volume reductions. The final product is compacted waste disk that is easy to manage and requires minimal crew handling. This paper describes the results of tests conducted using the PMWC with a wet and dry waste composite that was representative of the waste types expected to be encountered on long duration human space exploration missions.
Journal Article

Modeling Weather Impact on Airport Arrival Miles-in-Trail Restrictions

2013-09-17
2013-01-2301
When the demand for either a region of airspace or an airport approaches or exceeds the available capacity, miles-in-trail (MIT) restrictions are the most frequently issued traffic management initiatives (TMIs) that are used to mitigate these imbalances. Miles-in-trail operations require aircraft in a traffic stream to meet a specific inter-aircraft separation in exchange for maintaining a safe and orderly flow within the stream. This stream of aircraft can be departing an airport, over a common fix, through a sector, on a specific route or arriving at an airport. This study begins by providing a high-level overview of the distribution and causes of arrival MIT restrictions for the top ten airports in the United States. This is followed by an in-depth analysis of the frequency, duration and cause of MIT restrictions impacting the Hartsfield-Jackson Atlanta International Airport (ATL) from 2009 through 2011.
Technical Paper

Machine Learning Based Optimal Energy Storage Devices Selection Assistance for Vehicle Propulsion Systems

2020-04-14
2020-01-0748
This study investigates the use of machine learning methods for the selection of energy storage devices in military electrified vehicles. Powertrain electrification relies on proper selection of energy storage devices, in terms of chemistry, size, energy density, and power density, etc. Military vehicles largely vary in terms of weight, acceleration requirements, operating road environment, mission, etc. This study aims to assist the energy storage device selection for military vehicles using the data-drive approach. We use Machine Learning models to extract relationships between vehicle characteristics and requirements and the corresponding energy storage devices. After the training, the machine learning models can predict the ideal energy storage devices given the target vehicles design parameters as inputs. The predicted ideal energy storage devices can be treated as the initial design and modifications to that are made based on the validation results.
Journal Article

Two-Wavelength PLIF Diagnostic for Temperature and Composition

2008-04-14
2008-01-1067
Laser excitation wavelengths for two-line planar laser-induced fluorescence (PLIF) of 3-pentanone have been optimized for simultaneous imaging of temperature and composition under engine-relevant conditions. Validation of the diagnostic was performed in a motored optical IC engine seeded homogeneously with 3-pentanone. PLIF measurements of the uniform mixture during the compression stroke were used to measure the average temperature and to access the random uncertainty in the measurements. To determine the accuracy of the temperature measurements, experimental average temperatures were compared to values computed assuming isentropic compression and to the output of a tuned 1-D engine simulation. The comparison indicated that the absolute accuracy of the temperature measurements is better than ±5%. Probability density functions (PDFs) calculated from the single-shot images were used to estimate the precision of the measurements.
Journal Article

Effects of LIF Tracers on Combustion in a DI HCCI Engine

2008-10-06
2008-01-2407
Many experimental efforts to track fuel-air-residual mixture preparation in internal combustion engines have employed laser induced fluorescence (LIF) of tracers. Acetone and 3-pentanone are often chosen as tracers because of their relatively strong LIF signal, weak quenching, and reasonable match to thermo-chemical properties of common fuels such as iso-octane. However, the addition of these tracers to fuel-air mixtures could affect combustion behavior. In this work, we assess these effects to better understand limitations of tracer-based engine measurements. The effects of tracer seeding on combustion phasing, duration, and variation are studied in an HCCI engine using a recompression strategy to accommodate single- and multi-stage-ignition fuels.
Journal Article

Dual-Wavelength PLIF Measurements of Temperature and Composition in an Optical HCCI Engine with Negative Valve Overlap

2009-04-20
2009-01-0661
Negative valve overlap (NVO) is a valve strategy employed to retain and recompress residual burned gases to assist HCCI combustion, particularly in the difficult regime of low-load operation. NVO allows the retention of large quantities of hot residual burned gases as well as the possibility of fuel addition for combustion control purposes. Reaction of fuel injected during NVO increases charge temperature, but in addition could produce reformed fuel species that may affect main combustion phasing. The strategy holds potential for controlling and extending low-load HCCI combustion. The goal of this work is to demonstrate the feasibility of applying two-wavelength PLIF of 3-pentanone to obtain simultaneous, in-cylinder temperature and composition images during different parts of the HCCI/NVO cycle. Measurements are recorded during the intake and main compression strokes, as well as during the more challenging periods of NVO recompression and re-expansion.
Journal Article

Ground and Range Operations for a Heavy-Lift Vehicle: Preliminary Thoughts

2011-10-18
2011-01-2643
This paper discusses the ground and range operations for a Shuttle derived Heavy-Lift Vehicle being launched from the Kennedy Space Center on the Eastern range. Comparisons will be made between the Shuttle and a heavy lift configuration (SLS-ETF MPCV - April 2011) by contrasting their subsystems. The analysis will also describe a simulation configuration with the potential to be utilized for heavy lift vehicle processing/range simulation modeling and the development of decision-making systems utilized by the range. In addition, a simple simulation model is used to provide the required critical thinking foundations for this preliminary analysis.
Journal Article

NASA System-Level Design, Analysis and Simulation Tools Research on NextGen

2011-10-18
2011-01-2716
A review of the research accomplished in 2009 in the System-Level Design, Analysis and Simulation Tools (SLDAST) of the NASA's Airspace Systems Program is presented. This research thrust focuses on the integrated system-level assessment of component level innovations, concepts and technologies of the Next Generation Air Traffic System (NextGen) under research in the ASP program to enable the development of revolutionary improvements and modernization of the National Airspace System. The review includes the accomplishments on baseline research and the advancements on design studies and system-level assessment, including the cluster analysis as an annualization standard of the air traffic in the U.S. National Airspace, and the ACES-Air MIDAS integration for human-in-the-loop analyzes within the NAS air traffic simulation.
Journal Article

Modeling Weather Impact on Ground Delay Programs

2011-10-18
2011-01-2680
Scheduled arriving aircraft demand may exceed airport arrival capacity when there is abnormal weather at an airport. In such situations, Federal Aviation Administration (FAA) institutes ground-delay programs (GDP) to delay flights before they depart from their originating airports. Efficient GDP planning depends on the accuracy of prediction of airport capacity and demand in the presence of uncertainties in weather forecast. This paper presents a study of the impact of dynamic airport surface weather on GDPs. Using the National Traffic Management Log, effect of weather conditions on the characteristics of GDP events at selected busy airports is investigated. Two machine learning methods are used to generate models that map the airport operational conditions and weather information to issued GDP parameters and results of validation tests are described.
Journal Article

Exploring the Pathway to High Efficiency IC Engines through Exergy Analysis of Heat Transfer Reduction

2013-04-08
2013-01-0278
Heat transfer is one of the largest causes of exergy destruction in modern engines. In this paper, exergy distribution modeling was used to determine the potential of reduced engine heat transfer to provide significant gains in engine efficiency. As known from prior work, of itself, reducing heat transfer creates only a small increase in efficiency-most of the exergy is redirected into the exhaust stream-requiring both mechanical and thermal recovery of the exhaust exergy. Mechanical regeneration, through turbocharging and over-expansion, can lead to efficiencies exceeding 50%. Adding thermal regeneration, through high enthalpy steam injection or a bottoming cycle, can increase the efficiency potential to approximately 60%. With implementation of both mechanical and thermal regeneration, the only remaining cause of substantial exergy destruction is the combustion process.
Technical Paper

Application of Particle Tracking Velocimetry to the Cyclic Variability of the Pre-Combustion Flow Field in a Motored Axisymmetric Engine

1991-02-01
910475
A particle tracking velocimetry (PTV) system has been developed to measure two dimensional velocity fields in a motored axisymmetric engine with a transparent cylinder. The intake flow was seeded with phenolic microballoons (40 μm hollow spheres) and illuminated by a 1 mm thick horizontal sheet of pulsed laser light from a 25 Watt copper vapor laser capable of 30 ns pulses. Photographs containing tracks of dots representing the multiply exposed path of each particle were produced. These images were digitized by a custom scanner capable of 3456 by 5184 pixel resolution and binarized using an iterative threshold routine in order to locate the particles. Software then determined how the individual particles are organized into tracks and presented the results for operator verification. Velocity magnitude and direction were computed for each track and the results were interpolated to a fixed grid for further analysis.
Technical Paper

Options for Transpiration Water Removal in a Crop Growth System Under Zero Gravity Conditions

1991-07-01
911423
The operation of a crop growth system in micro-gravity is an important part of the National Aeronautics and Space Administration's Closed Ecological Life Support System development program. Maintaining densely arrayed plants in a closed environment imposed to induce high growth rates must be expected to result in substantial levels of water transpiration rate. Since the environmental air is recirculated, the transpiration water must be removed. In an operating CELSS, it is expected that this water will provide potable water for use of the crew. There is already considerable knowledge about water removal from crew environmental air during orbital and transfer activities, and the difference between the conditions of the described requirement and the conditions for which experience has been gained is the quantities involved and the reliability implications due to the required periods of operation.
Journal Article

Autonomy and Intelligent Technologies for Advanced Inspection Systems

2013-09-17
2013-01-2092
This paper features a set of advanced technologies for autonomy and intelligence in advanced inspection systems of facility operations. These technologies offer a significant contribution to set a path to establish a system and an operating environment with autonomy and intelligence for inspection, monitoring and safety via gas and ambient sensors, video mining and speech recognition commands on unmanned ground vehicles and other platforms to support operational activities in the Cryogenics Test bed and other facilities and vehicles. These advanced technologies are in current development and progress and their functions and operations require guidance and formulation in conjunction with the development team(s) toward the system architecture.
Journal Article

Time-Varying Loads of Co-Axial Rotor Blade Crossings

2017-09-19
2017-01-2024
The blade crossing event of a coaxial counter-rotating rotor is a potential source of noise and impulsive blade loads. Blade crossings occur many times during each rotor revolution. In previous research by the authors, this phenomenon was analyzed by simulating two airfoils passing each other at specified speeds and vertical separation distances, using the compressible Navier-Stokes solver OVERFLOW. The simulations explored mutual aerodynamic interactions associated with thickness, circulation, and compressibility effects. Results revealed the complex nature of the aerodynamic impulses generated by upper/lower airfoil interactions. In this paper, the coaxial rotor system is simulated using two trains of airfoils, vertically offset, and traveling in opposite directions. The simulation represents multiple blade crossings in a rotor revolution by specifying horizontal distances between each airfoil in the train based on the circumferential distance between blade tips.
Technical Paper

Milestones in Airborne Astronomy: From the 1920's to the Present

1997-10-13
975609
The use of airplanes for astronomical observations began in the 1920's. From then until the early 1960's, almost all of the observations made from aircraft were for the purpose of viewing solar eclipses. Due to advances in technology and increasing interest in infrared astronomy, the use of airplanes for astronomy expanded during the 1960's to include planetary observations and a wide range of other studies. This paper describes some of the major milestones of airborne astronomy, from the1920's to the present.
Technical Paper

Development and Demonstration of a Prototype Free Flight Cockpit Display of Traffic Information

1997-10-01
975554
Two versions of a prototype Free Flight cockpit situational display (Basic and Enhanced) were examined in a simulation at the NASA Ames Research Center. Both displays presented a display of traffic out to a range of 120 NM, and an alert when the automation detected a substantial danger of losing separation with another aircraft. The task for the crews was to detect and resolve threats to separation posed by intruder aircraft. An Enhanced version of the display was also examined. It incorporated two additional conflict alerting levels and tools to aid in trajectory prediction and path planning. Ten crews from a major airline participated in the study. Performance analyses and pilot debriefings showed that the Enhanced display was preferred, and that minimal separation between the intruder and the ownship was larger with the Enhanced display. In addition, the additional information on the Enhanced display did not lead crews to engage in more maneuvering.
Technical Paper

Assessment of the Vapor Phase Catalytic Ammonia Removal (VPCAR) Technology at the MSFC ECLS Test Facility

2007-07-09
2007-01-3036
The Vapor Phase Catalytic Ammonia Removal (VPCAR) technology has been previously discussed as a viable option for the Exploration Water Recovery System. This technology integrates a phase change process with catalytic oxidation in the vapor phase to produce potable water from exploration mission wastewaters. A developmental prototype VPCAR was designed, built and tested under funding provided by a National Research Announcement (NRA) project. The core technology, a Wiped Film Rotating Device (WFRD) was provided by Water Reuse Technologies under the NRA, whereas Hamilton Sundstrand Space Systems International performed the hardware integration and acceptance test of the system. Personnel at the Ames Research Center performed initial systems test of the VPCAR using ersatz solutions. To assess the viability of this hardware for Exploration Life Support (ELS) applications, the hardware has been modified and tested at the MSFC ECLS Test Facility.
Technical Paper

Breakeven Mission Durations for Physicochemical Recycling to Replace Direct Supply Life Support

2007-07-09
2007-01-3221
The least expensive life support for brief human missions is direct supply of all water and oxygen from Earth without any recycling. The currently most advanced human life support system was designed for the International Space Station (ISS) and will use physicochemical systems to recycle water and oxygen. This paper compares physicochemical to direct supply air and water life support systems using Equivalent Mass (EM). EM breakeven dates and EM ratios show that physicochemical systems are more cost effective for longer mission durations.
Technical Paper

Development and Testing of a Breadboard Compactor for Advanced Waste Management Designs

2007-07-09
2007-01-3267
Waste management is a vital function of spacecraft life support systems as it is necessary to meet crew health and safety and quality of life requirements. Depending on the specific mission requirements, waste management operations can include waste collection, segregation, containment, processing, storage and disposal. For the Crew Exploration Vehicle (CEV), addressing volume and mass constraints is paramount. Reducing the volume of trash prior to storage is a viable means to recover habitable volume, and is therefore a particularly desirable waste management function to implement in the CEV, and potentially in other spacecraft as well. Research is currently being performed at NASA Ames Research Center to develop waste compaction systems that can provide both volume and mass savings for the CEV and other missions.
Technical Paper

Waste Compaction Technology Development for Human Space Exploration Missions

2007-07-09
2007-01-3265
Waste management is a critical component of life support systems for manned space exploration. Human occupied spacecraft and extraterrestrial habitats must be able to effectively manage the waste generated throughout the entire mission duration. The requirements for waste systems may vary according to specific mission scenarios but all waste management operations must allow for the effective collection, containment, processing, and storage of unwanted materials. NASA's Crew Exploration Vehicle usually referred to as the CEV, will have limited volume for equipment and crew. Technologies that reduce waste storage volume free up valuable space for other equipment. Waste storage volume is a major driver for the Orion waste compactor design. Current efforts at NASA Ames Research Center involve the development of two different prototype compactors designed to minimize trash storage space.
X