Refine Your Search

Topic

Search Results

Journal Article

A Study of Supercharged HCCI Combustion using In-cylinder Spectroscopic Techniques and Chemical Kinetic Calculation

2013-10-15
2013-32-9171
A great deal of interest is focused on Homogeneous Charge Compression Ignition (HCCI) combustion today as a combustion system enabling internal combustion engines to attain higher efficiency and cleaner exhaust emissions. Because the air-fuel mixture is compression-ignited in an HCCI engine, control of the ignition timing is a key issue. Additionally, because the mixture ignites simultaneously at multiple locations in the combustion chamber, it is necessary to control the resultant rapid combustion, especially in the high-load region. Supercharging can be cited as one approach that is effective in facilitating high-load operation of HCCI engines. Supercharging increases the intake air quantity to increase the heat capacity of the working gas, thereby lowering the combustion temperature for injection of the same quantity of fuel. In this study, experiments were conducted to investigate the effects of supercharging on combustion characteristics in an HCCI engine.
Technical Paper

Development of plasma spray-coated cylinders

2000-06-12
2000-05-0069
In recent years, one of the most important issues in the automotive industry is the improvement of fuel economy started from the environmental problem. Making cars lighter and reducing the coefficient of friction are two ways to improve fuel economy. Reducing the weight of a cylinder, an engine component, is a typical example. The traditional, mainstream method to reduce cylinder weight has been to convert cast iron cylinder blocks into aluminum cylinder blocks by using cast iron sleeves. To further make engines lighter and more compact, however, it is desirable that cast iron sleeves be abolished, or, in other words, making cylinder blocks sleeveless. A typical technology to make cylinder blocks sleeveless is applying anti- wear coating on a bore wall. Electroplating is currently the mainstream method used for this technology. It must be noted, however, electroplating is used primarily for low-pressure cast cylinders.
Technical Paper

Comparison of Impact Due to an Aerodynamic Component in Wind Tunnel and On-Road Tests

2011-04-12
2011-01-0157
The aerodynamic performance of new vehicles is commonly determined using computational fluid dynamics (CFD) and wind tunnel tests. The final assessment is carried out by actual running tests. In particular, ideas regarding fuel consumption improvement that relate to components for the reduction of the coefficient of drag (CD) value are evaluated by coast-down tests. However, a difference often exists between the component's efficiency between wind tunnel tests and coast-down tests. Therefore, we focused on the efficiency of an air-dam spoiler in reducing CD values. A comparison was made between the aerodynamic effect of the air-dam spoiler in wind tunnel and coast-down tests in terms of the CD value and the wake structure behind the vehicle. To determine the relationship between the CD value and the wake structure behind the vehicle, we measured vehicle speed, wind velocity and direction, vehicle height, and pressure distribution on the back door.
Technical Paper

Prediction of Aeroacoustical Interior Noise of a Car, Part-1 Prediction of Pressure Fluctuations on External Surfaces of a Car

2016-04-05
2016-01-1617
A wall-resolving Large Eddy Simulation (LES) has been performed by using up to 40 billion grids with a minimum grid resolution of 0.1 mm for predicting the exterior hydrodynamic pressure fluctuations in the turbulent boundary layers of a test car with simplified geometry. At several sampling points on the car surface, which included a point on the side window, the door panel, and the front fender panel, the computed hydrodynamic pressure fluctuations were compared with those measured by microphones installed on the surface of the car in a wind tunnel, and effects of the grid resolution on the accuracy of the predicted frequency spectra were discussed. The power spectra of the pressure fluctuations computed with 5 billion grid LES agreed reasonably well with those measured in the wind tunnel up to around 2 kHz although they had some discrepancy with the measured ones in the low and middle frequencies.
Technical Paper

Investigations of the impact of 10% ethanol blended fuels on performances of sold gasoline vehicles in the Japanese market already on the road in Japan

2011-08-30
2011-01-1987
The study of 10% ethanol blended gasoline (E10 gasoline) utilization has been conducted in the Japan Auto-Oil Program (JATOP). In order to clarify the impact of E10 gasoline on vehicle performances, exhaust emissions, evaporative emissions, driveability and material compatibility have been investigated by using domestic gasoline vehicles including mini motor vehicles which are particular to Japan. The test results reveal that E10 gasoline has no impact on exhaust emissions, engine startup time and acceleration period under the hot start condition, but a slight deterioration is observed in some test cases under the cold start condition using E10 gasolines with 50% distillation temperature (T50) level set to the upper limit of Japanese Industrial Standards (JIS) K 2202. Regarding evaporative emissions, the tested vehicles shows no remarkable increase in the hot soak loss (HSL), diurnal breathing loss (DBL) and running loss (RL) testing with E10 gasolines.
Technical Paper

Comparative Investigation on Fuel Feed Methods in Two-Stroke Cycle Methanol Engine

1992-10-01
922312
A direct fuel-injection two-stroke cycle engine operated with neat methanol was investigated. The engine performance, combustion and exhaust-gas characteristics were analyzed experimentally and compared for operation with a carburetor, EFI injection at the intake manifold, and EFI injection at the scavenging port. The power and the brake thermal efficiency of the direct fuel-injection engine were higher than those of engines operated with a carburetor and either of the two EFI methods. The exhausted unburnt fuel of the direct fuel-injection engine was lower than that for operation with a carburetor, and formaldehyde and the CO concentration were of the same level as for operation with the carburetor and EFI methods. The NOx concentration of the direct fuel-injection was half the level of the result of carburetor operation.
Technical Paper

In-Cylinder Flow Measurement and Its Application for Cyclic Variation Analysis in a Two-Stroke Engine

1995-02-01
950224
The purpose of this study is to experimentally investigate in-cylinder flows with cyclic variation in a practical part-loaded two-stroke engine. First, the in-cylinder LDV measurements are introduced, which were carried out above the port layout and the combustion chamber as well as the exhaust pipe or the transfer port together with the simultaneous pressure measurements. Second, the in-cylinder flow characteristics in different combustion groups were discussed. The in-cylinder flow and the combustion-chamber flow were not simply characterized by the pressure variation in the engine or the other passage flow in the exhaust pipe or the transfer port. Finally, the in-cylinder flow structure with three stages was shown using the vector variation analysis and the drawing of the velocity profiles in the engine parts.
Technical Paper

Experimental Detection of Misfiring Source from Flow Rate Variation at Transfer Port and Exhaust Pipe in a Two-Stroke Engine

1995-09-01
951781
The purpose of this study was to detect a misfiring cycle in terms of the transfer-passage and the exhaust-pipe flow rate by experimental measurements. Simultaneous measurements of flow rates and in-cylinder pressure were carried out. The flow rate data were grouped into the different combustion classes by the in-cylinder pressure. A large flow rate of exhaust blow-down and a large reverse flow rate were observed in the cycle before misfiring, compared with in the cycle before firing. It showed that high concentration of the residual burnt gas in the cylinder was the main source of misfiring, this feature was also demonstrated by the complementary measurement of CO and CO2 concentrations.
Technical Paper

Combustion Analysis and Its Optimization in Two-Stroke Engines

1995-09-01
951788
The purpose of this study is to show cycle-to-cycle combustion variation in transient conditions of quick throttle opening and to control the combustion fluctuation improve acceleration in a two-stroke motorcycle engine. Two phases of engine operation were focused on: the low-load condition before quick throttle opening, and the transient condition after quick throttle opening. The time-series variation of the heat release rate based on the in-cylinder pressure, the engine-speed and the exhaust pressure variation were measured simultaneously, in an engine with a new multiple-timing-ignition-system, and in an engine with a modified exhaust port. Stable ignition performance and fast burning velocity were the keys to attaining smooth acceleration.
Technical Paper

Development of an electronically controlled four-speed automatic transmission with a D-range neutral control system

2000-06-12
2000-05-0025
We have developed an electronically controlled four-speed automatic transmission with a "D-range neutral control system" for vehicles of small piston displacements (0.66 to 1.0 liter). When the vehicle is stationary with the engine idling, the system reduces the pressure being supplied to the clutch, thereby creating a neutral clutch condition. This helps reduces fuel consumption of the stationary vehicle without intervention of the driver. The non-intervention, however, can cause discomfort for the driver when the system is engaged and disengaged as the vehicle condition (i.e., engine revolution speed, vibration or noise transmitted to the vehicle) may change noticeably. Such a cause of discomfort that surfaced during the system development stage was thoroughly investigated and successfully eliminated by improving the method of control.
Technical Paper

Detecting a Fully-Closed Throttle by Manifold Pressure in Fuel Injection System with Idle Speed Control

2014-11-11
2014-32-0075
Various sensors including throttle position sensors (TPS), manifold pressure sensors (MPS), crank angle sensors, engine temperature sensors, and oxygen sensors are mounted in electronically controlled fuel injection (FI) systems to accurately regulate the air-fuel ratio according to the operating state and operating environment. Among these vehicle-mounted sensors, TPS has functions for detecting a fully-closed throttle and estimating intake air volume by the amount of throttle opening. Currently, we have conducted a study on transferring TPS functions into the MPS (manifold pressure sensor) in order to eliminate the TPS. Here we report on detecting a fully-closed throttle for achieving fuel cut control (FCC) and idle speed control (ISC) in fuel injection systems. We contrived a means for fully-closed throttle detection during ISC and controlling changes in the bypass opening during FCC in order to accurately judge each fully-closed throttle state via the manifold pressure.
Technical Paper

Piston Temperature Measurement in Internal Combustion with Telemetric Method

2014-11-11
2014-32-0051
Currently, the improvement of fuel economy is the most important issue in automobile engine development. To improve fuel economy via greater thermal efficiency, the enhancement of the compression ratio and the reduction of thermal losses because of cooling have been widely investigated. These efforts to improve thermal efficiency increase the thermal load on pistons. Ensuring the reliability of the pistons and the antiknocking capacity of engines require a better understanding of piston temperature distributions through accurate measurements under various engine operating conditions. Thus, direct and indirect measurement methods have been developed to estimate the actual piston temperature. Direct methods, such as linkage-type measurements, are not typically applicable under higher engine speeds because of the poor durability of linkages.
Technical Paper

Study on Efficiency Improvement of Compact Generator for Motorcycle

2014-11-11
2014-32-0138
This paper describes our attempts to improve the power generation efficiency of single-phase permanent magnet generators of outer-rotor type for motorcycles by their reducing electric losses (iron loss and copper loss) by electromagnetic analysis. In this study, we first broke down the electric losses into iron loss and copper loss by electromagnetic analysis. Then, focusing on the iron loss that the loss ratio was high, we modified the thickness and material of the stator core sheets and reduced the iron loss in the non-magnetic protection covers of the magnets on the rotor, and thus improved power generation efficiency. Further, we analyzed the flow of magnetic flux and magnetic flux density and found that it would be effective against leakage of the flux between the magnets if we spaced the magnets, which we did and which also allowed us to reduce the amount of magnets used.
Technical Paper

Computational Study to Improve Thermal Efficiency of Spark Ignition Engine

2015-03-10
2015-01-0011
The objective of this paper is to investigate the potential of lean burn combustion to improve the thermal efficiency of spark ignition engine. Experiments used a single cylinder gasoline spark ignition engine fueled with primary reference fuel of octane number 90, running at 4000 revolution per minute and at wide open throttle. Experiments were conducted at constant fueling rate and in order to lean the mixture, more air is introduced by boosted pressure from stoichiometric mixture to lean limit while maintaining the high output engine torque as possible. Experimental results show that the highest thermal efficiency is obtained at excess air ratio of 1.3 combined with absolute boosted pressure of 117 kPa. Three dimensional computational fluid dynamic simulation with detailed chemical reactions was conducted and compared with results obtained from experiments as based points.
Technical Paper

21 Development of a Small Displacement Gasoline Direct Injection Engine

2002-10-29
2002-32-1790
We have developed a small-displacement gasoline direct-injection engine (1.3L). Gasoline direct-injection engines rely on ultra-lean stratified combustion to deliver significantly better fuel economy, and are already used in many practical applications. When gasoline direct-injection is applied to a small-displacement engine, however, the amount of wall wetting of fuel on the piston surface will increase because the traveled length of the fuel spray is short. This may result in problems such as smoke production, high emissions of unburned HC, and poor combustion efficiency.
Technical Paper

Measurement of Fuel Liquid Film under the Different Injection Pressure

2013-10-15
2013-32-9167
The purpose of this study was to measure the distribution and volume of liquid film adhering to the walls after the injection of fuel by an injector of a port-injection engine using the laser induced fluorescence (LIF) method while changing the fuel pressure and the angle of injection, and to consider how adhesion can be reduced in order to decrease the exhaust emission of gasoline engine. Using a high-speed camera, we filmed the adhesion and evaporation of liquid film in time series. Perylene, used here as a fluorescence dye, was blended with a fuel comprising toluene and n-heptane, and the mixture was injected onto a solid surface using a port-injection injector. UVLED with a maximum output wavelength of 375 nm was used as the exciting light. To more accurately measure the volume of fuel adhesion, it was necessary to correct the unevenness of the light source.
Technical Paper

Prediction Method of Speed Characteristics of V-Belt CVT

2011-11-08
2011-32-0643
The Mechanical CVT is mainly used for small size motorcycle called “scooter”, which has a 250 cc or less engine capacity. The speed characteristics of the Mechanical CVT are decided by engine speed and load-torque on driven pulley. In few papers, these characteristics are studied under full-load or no-load condition [1]-[2]. However, the characteristics at part-load condition are not well known. To develop a motorcycle with low fuel consumption, it is important that the characteristics at part-load condition are considered in driving cycle. Driving cycle simulation is needed to estimate CVT ratio at design stage. This research proposes equations representing the speed characteristics of the Mechanical CVT at part-load condition. Driving cycle simulation is also developed for estimation of the fuel consumption at optional driving cycles and the dynamic behavior of the CVT system. It could be a CVT design tool to makes sure whether its performance is achieved for design targets.
Technical Paper

Radiation Noise Analysis for Electric Scooter Swing-arm

2011-11-08
2011-32-0650
Traditionally, a Boundary Element Method (BEM) is often used for a radiation noise analysis. In recent years, to define an infinite region, a Finite Element Method (FEM) that can use an infinite boundary condition has been developed. However, studies on the radiation noise analysis by the FEM are few. Recently a number of an electric scooter has been increased. One of development issues is a radiation noise by a vibration of a wall surface of a swing-arm. In this paper, the vibration of the wall surface of the swing-arm is calculated, and a sound pressure level (SPL) of the radiation noise is calculated using a result of the frequency response analysis. And compare results of an experimental and an analytical sound pressure, its results were matched to within 5% error. Furthermore we used the method of this paper, proposed the model to reduce the radiation noise 10dB. Then we compare with the FEM and the BEM to verify the computation time and the mesh size.
Technical Paper

Development and Evaluation of Air-Cooled Fuel Cell Scooter

2011-11-08
2011-32-0644
Suzuki Motor Corporation unveiled the Burgman Fuel Cell Scooter (Burgman FCS) at the “TOKYO MOTOR SHOW 2009”. It is a simple and high-efficiency fuel cell scooter, which is equipped with a compact and unique air-cooled fuel cell system, jointly developed with the UK firm, Intelligent Energy Ltd. In order to evaluate the vehicle performance and find any powertrain related issues from actual road and traffic conditions, it has been tested in a fleet testing program supported by the UK Technology Strategy Board (TSB), in UK since February 2010. In addition, seeking for different operating conditions, it is planned to provide it in 2011 to a further field test to be held in Japan. Additionally in March 2011, it obtained Whole Vehicle Type Approval (WVTA) in the European Union; the first time this has been achieved for any fuel cell vehicle. This proved that it has achieved the high level environmental acceptability and safety requirements which are essential for the practical scooter.
Technical Paper

Development of New Compact Hybrid System

2017-11-05
2017-32-0039
One of the fuel efficiency improvement policy of Small vehicle included Regenerative Braking System (JSAE 20139006 / SAE 2013-32-9006), but developed New Compact Hybrid System to realize further fuel efficiency improvement. The previous system has losses for the engine friction when deceleration energy is collected, but the new system realizes effective regeneration with separating the engine. The new system collect deceleration energy in decelerating time and coasting as well as the previous system, but the fuel consumption with the engine is minimized by running EV with the collected energy and realize further fuel efficiency improvement. In addition, the assist is also performed with collected energy, so both good efficiency and good accelerating performance are realized. This system adopts Auto Gear Shift® system (following, AGS) which is based on a manual transmission.
X