Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Evaluation of Coatings and Materials for Future Radiators

NASA's current vision for exploration dictates that radiators for a Crew Exploration Vehicle (CEV), a Lunar Surface Access Module (LSAM), and a lunar base will need to be developed. These applications present new challenges when compared to previous radiators on the Space Shuttle and International Space Station (ISS). In addition, many technological advances have been made that could positively impact future radiator design. This paper outlines new requirements for future radiators and documents a trade study performed to select some promising technologies for further evaluation. These technologies include carbon composites substrates as well as Optical Solar Reflectors (OSRs), a lithium based white paint, and electrochromic thin films for optical coatings.
Technical Paper

Earth Observing-1 Technology Validation: Carbon-Carbon Radiator Panel

The Earth Observing-1 spacecraft, built by Swales Aerospace for NASA's Goddard Space Flight Center (GSFC), was successfully launched on a Boeing Delta-II ELV on November 21, 2000. The EO-1 spacecraft thermal design is a cold bias design using passive radiators, regulated conductive paths, thermal coatings, louvers, thermostatically controlled heaters and multi-layer insulating (MLI) blankets. Five of the six passive radiators were aluminum honeycomb panels. The sixth panel was a technology demonstration referred to as the Carbon Carbon Radiator (CCR) panel. Carbon-Carbon (C-C) is a special class of composite materials in which both the reinforcing fibers and matrix materials are made of pure carbon. The use of high conductivity fibers in C-C fabrication yields composite materials that have high stiffness and high thermal conductivity.
Technical Paper

Thermal Performance Evaluation of a Small Loop Heat Pipe for Space Applications

A Small Loop Heat Pipe (SLHP) featuring a wick of only 1.27 cm (0.5 inches) in diameter has been designed for use in spacecraft thermal control. It has several features to accommodate a wide range of environmental conditions in both operating and non-operating states. These include flexible transport lines to facilitate hardware integration, a radiator capable of sustaining over 100 freeze-thaw cycles using ammonia as a working fluid and a structural integrity to sustain acceleration loads up to 30 g. The small LHP has a maximum heat transport capacity of 120 Watts with thermal conductance ranging from 17 to 21 W/°C. The design incorporates heaters on the compensation chamber to modulate the heat transport from full-on to full-stop conditions. A set of start up heaters are attached to the evaporator body using a specially designed fin to assist the LHP in starting up when it is connected to a large thermal mass.
Technical Paper

EO-1 Spacecraft Thermal Vacuum Testing: An Innovative Approach to Cost Effective Verification

The Earth Observing-1 (EO-1) spacecraft is the first earth orbiting spacecraft in NASA's New Millennium Program. The New Millennium Program is part of the agency's Mission to Planet Earth enterprise, a series of space missions designed to enhance our knowledge of the Earth and its environmental systems. The EO-1's mission is to employ advanced remote-sensing technologies, including hyperspectral and multispectral imaging techniques, to develop highly accurate terrestrial images. In order to accomplish this mission, the spacecraft contains three primary instruments: Advanced Land Imager (ALI), Atmospheric Corrector, and Hyperion. The bus supporting these sensors is part of a 3-axis stabilized, nadir pointing spacecraft that employs an articulating solar array to provide a constant voltage, regulated power bus. EO-1 also contains several new technologies such as a carbon-carbon radiator and a pulsed plasma thruster that will be verified as part of the secondary mission objectives.
Technical Paper

EO-1 Spacecraft Thermal Design and Analysis: Using the Thermal Synthesis System (TSS) and SINDA/FLUINT

The thermal design and analysis of the Earth Observing-1 (EO-1) spacecraft, built by Swales Aerospace for NASA's Goddard Space Flight Center (GSFC), consisted of a Thermal Synthesis System1 (TSS) geometric math model (GMM) and a SINDA/FLUINT2 thermal math model (TMM). These models took advantage of the submodel capability of TSS and SINDA/FLUINT providing a simplified approach for merging spacecraft and instrument models. In addition to the spacecraft thermal model, there is the Advanced Land Imager (ALI) instrument model by MIT/LL, the Hyperion instrument by TRW, the Atmospheric Corrector (AC) instrument by GSFC, and the New Millenium Program (NMP) experiments. Separate thermal models were developed for each NMP experiment which included, the Pulse Plasma Thruster (PPT) by Primex, Lightweight Flexible Solar Array (LFSA) by Lockheed, X-Band Phased Array by Boeing and the Carbon-Carbon Radiator that was developed as a joint effort between NASA and industry.
Technical Paper

Advanced Components and Techniques for Cryogenic Integration

This paper describes the development and testing status of several novel components and integration tools for space-based cryogenic applications. These advanced devices offer functionality in the areas of cryogenic thermal switching, cryogenic thermal transport, cryogenic thermal storage, and cryogenic integration. As such, they help solve problems associated with cryocooler redundancy, across-gimbal thermal transport, large focal plane array cooling, fluid-based cryogenic transport, and low vibration thermal links. The devices discussed in the paper include a differential thermal expansion cryogenic thermal switch, an across-gimbal thermal transport system, a cryogenic loop heat pipe, a cryogenic capillary pumped loop, a beryllium cryogenic thermal storage unit, a high performance flexible conductive link, a kevlar cable structural support system, and a high conductance make-break cryogenic thermal interface.
Technical Paper

Design and Test Results of Reversible Loop Heat Pipe

In typical loop heat pipe (LHP) applications, the LHP design calls for a dedicated evaporator and a dedicated condenser. Applications exist for reversible loop heat pipes (LHPs), which can transport heat in either direction. In the reversible LHP design, two evaporator pumps are plumbed together, one which acts as an evaporator while the other acts as a condenser. The two pumps can reverse roles, simply by reversing the temperature gradient across the loop. Thus, either pump can be used as an evaporator or a condenser, depending upon the environment. Reversible LHPs can be used to share heat between components, or to cross-strap opposing spacecraft radiators. A reversible LHP was built and tested to demonstrate feasibility and to characterize its performance capabilities and attributes. The device was tested by either alternately heating each evaporator electrically or by inducing a temperature difference between the two ends of the device.
Technical Paper

Flight Testing of a Cryogenic Capillary Pumped Loop

This paper describes the flight test results of the fifth generation cryogenic capillary pumped loop (CCPL-5) which flew on the Space Shuttle STS-95 in October of 1998 as part of the CRYOTSU Flight Experiment. This flight was the first in-space demonstration of the CCPL, a lightweight heat transport and thermal switching device for future integrated cryogenic bus systems. The CCPL-5 utilized nitrogen as the working fluid and operated between 75K and 110K. Flight results indicated excellent performance of the CCPL-5 in a micro-gravity environment. The CCPL could start from a supercritical condition in all tests, and the reservoir set point temperature controlled the loop operating temperature regardless of changes in the heat load and/or the sink temperature. In addition, the loop demonstrated successful operation with heat loads ranging from 0.5W to 3W, as well as with parasitic heat loads alone.
Technical Paper

Deployable Radiators - A Multi-Discipline Approach

The ADRAD deployable radiator is in development at Swales Aerospace to provide additional heat rejection area for spacecraft without envelope impact. The ADRAD design incorporates ALPHA loop heat pipes, an aluminum honeycomb radiator with embedded condenser, OSR optical coating, spherical bearing hinges, pyrotechnic release devices and snubbers. This paper describes the design of ADRAD to a set of “generic” GEO requirements, including a nominal heat rejection capacity of 1250 W. Thermal, structural and mechanism considerations are described along with the comprehensive systems approach necessary to produce an integrated subsystem.