Refine Your Search



Search Results

Technical Paper

Numerical Modeling of the Damping Effect of Fibrous Acoustical Treatments

The damping effect that is observed when a fibrous acoustical treatment is applied to a thin metal panel typical of automotive structures has been modeled by using three independent techniques. In the first two methods the fibrous treatment was modeled by using the limp frame formulation proposed by Bolton et al., while the third method makes use of a general poro-elastic model based on the Biot theory. All three methods have been found to provide consistent predictions that are in excellent agreement with one another. An examination of the numerical results shows that the structural damping effect results primarily from the suppression of the nearfield acoustical motion within the fibrous treatment, that motion being closely coupled with the vibration of the base panel. The observed damping effect is similar in magnitude to that provided by constrained layer dampers having the same mass per unit area as the fibrous layer.
Technical Paper

Modeling of Nonlinear Elastomeric Mounts. Part 1: Dynamic Testing and Parameter Identification

A methodology for modeling elastomeric mounts as nonlinear lumped parameter models is discussed. A key feature of this methodology is that it integrates dynamic test results under different conditions into the model. The first step is to model the mount as a linear model that is simple but reproduces accurately results from dynamic tests under small excitations. Frequency Response Functions (FRF) enables systematic calculation of the parameters for the model. Under more realistic excitation, the mount exhibits non-linearity, which is investigated in the next step. For nonlinear structures, a simple and intuitive method is to use time-domain force-displacement (F-x) curves. Experiments to obtain the F-x curves involve controlling the displacement excitation and measuring the induced forces. From the F-x curves, stiffness and damping parameters are obtained with an optimization technique.
Technical Paper

Characterization of a Vibration Damping Mount

Several available mathematical models for vibration dampers were compared to dynamic test results. The comparison results in a simple model that agrees well with both the magnitude and phase characteristics of experimentally obtained frequency response functions. The resulting model can be used as a correct boundary condition for finite element models of the structure to which the dampers are attached.
Technical Paper

Reliability Analysis of an Automotive Wheel Assembly

The incorporation of reliability theory into a fatigue analysis algorithm is studied. This probabilistic approach gives designers the ability to quantify “real world” variations existing in the material properties, geometry, and loading of engineering components. Such information would serve to enhance the speed and accuracy of current design techniques. An automobile wheel assembly is then introduced as an example of the applications of this durability/reliability design package.
Technical Paper

Truck Ride — A Mathematical and Empirical Study

“Truck Ride” in this study refers to some vehicle ride parameters involved in tractor-trailer combinations. For the study, a mathematical model of a tractor-trailer vehicle as a vibrating system was developed. Principles of vibration theory were applied to the model while a digital computer was employed to investigate the complex system. To parallel the analytical investigation of the tractor-trailer vehicle, vehicle studies were conducted using a magnetic tape recorder and associated instrumentation installed in the tractor. Parameters studied included coupler position on the tractor, laden weight of trailer, spring rates of the different axles of the combination, damping capacity associated with each spring rate, vehicle speed, and “tar strip” spacing of the highway and cab mountings. The mathematical results were used as a basis for empirical study. A comparison of calculated and empirical data are reported.
Technical Paper

Simulation and Bench Testing of a GM 5.3L V8 Engine

The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is currently modeling and bench testing powertrain components for a parallel plug-in hybrid electric vehicle (PHEV). The custom powertrain is being implemented in a 2016 Chevrolet Camaro for the EcoCAR 3 competition. The engine, a General Motors (GM) L83 5.3L V8 with Active Fuel Management (AFM) from a 2014 Silverado, is of particular importance for vehicle integration and functionality. The engine is one of two torque producing components in the powertrain. AFM allows the engine to deactivate four of the eight cylinders which is essential to meet competition goals to reduce petroleum energy use and greenhouse gas emissions. In-vehicle testing is performed with a 2014 Silverado on a closed course to understand the criteria to activate AFM. Parameters required for AFM activation are monitored by recording vehicle CAN bus traffic.
Technical Paper

An Illustrative Look at Energy Flow through Hybrid Powertrains for Design and Analysis

Improving fuel economy and overall vehicle emissions are very important in today's society with strict new regulations throughout the world. To help in the education process for the next generation of design engineers, this paper seeks to define a powertrain model created and developed to help users understand the basics behind hybrid vehicles and the effects of these advanced technologies. One of the main goals of this research is to maintain a simplified approach to model development. The 1 Hz model described within this work aims to allow energy to be simply and understandably traced through a hybrid powertrain. Through the use of a “backwards” energy tracking method, demand for a drive cycle is found, and, after tracing the energy demand through each powertrain component, the resulting fuel to meet vehicle demand and associated powertrain losses is found.
Technical Paper

Using Surface Texture Parameters to Relate Flat Belt Laboratory Traction Data to the Road

Indoor laboratory tire testing on flat belt machines and tire testing on the actual road yield different results. Testing on the machine offers the advantage of repeatability of test conditions, control of the environmental condition, and performance evaluation at extreme conditions. However, certain aspects of the road cannot be reproduced in the laboratory. It is thus essential to understand the connection between the machine and the road, as tires spend all their life on the road. This research, investigates the reasons for differences in tire performance on the test machine and the road. The first part of the paper presents a review on the differences between tire testing in the lab and on the road, and existing methods to account for differences in test surfaces.
Journal Article

Improved Model for Coupled Structural-Acoustic Modes of Tires

Experimental measurements of tire tread band vibration have provided direct evidence that higher order structural-acoustic modes exist in tires, not just the well-known fundamental acoustical mode. These modes display both circumferential and radial pressure variations within the tire's air cavity. The theory governing these modes has thus been investigated. A brief recapitulation of the previously-presented coupled structural-acoustical model based on a tensioned string approach will be given, and then an improved tire-acoustical model with a ring-like shape will be introduced. In the latter model, the effects of flexural and circumferential stiffness are considered. This improved model accounts for propagating in-plane vibration in addition to the essentially structure-borne flexural wave and the essentially airborne longitudinal wave accounted for in the previous model. The longitudinal structure-borne wave “cuts on” at the tire's circumferential ring frequency.
Journal Article

Admissible Shape Parameters for a Planar Quasi-Static Constraint Mode Tire Model

Computationally efficient tire models are needed to meet the timing and accuracy demands of the iterative vehicle design process. Axisymmetric, circumferentially isotropic, planar, discretized models defined by their quasi-static constraint modes have been proposed that are parameterized by a single stiffness parameter and two shape parameters. These models predict the deformed shape independently from the overall tire stiffness and the forces acting on the tire, but the parameterization of these models is not well defined. This work develops an admissible domain of the shape parameters based on the deformation limitations of a physical tire, such that the tire stiffness properties cannot be negative, the deformed shape of the tire under quasi-static loading cannot be dominated by a single harmonic, and the low spatial frequency components must contribute more than higher frequency components to the overall tire shape.
Technical Paper

Electric Power Train Configurations with Appropriate Transmission Systems

Referring to the transmission development, three different classifications of the power train are useful. These are the conventional power train with combustion-engined drive of the wheels, the electric power train with electromotive drive of the wheels and the hybrid power train with both types of drive. Due to this division, the micro hybrid belongs to the conventional power train while the serial hybrid is classified with the electric power train. Subdivisions of the electric power train are the decentralized drives near the axle shafts or the wheel hub drive and the central drive with differential. The choice of the electric motor is dependent on different influences such as the package, the costs or the application area. Furthermore the execution of the transmission system does influence the electric motor. Wheel hub drives are usually executed on wheel speed level or with single ratio transmission.
Journal Article

Linear Quadratic Game Theory Approach to Optimal Preview Control of Vehicle Lateral Motion

Vehicle stability is maintained by proper interactions between the driver and vehicle stability control system. While driver describes the desired target path by commanding steering angle and acceleration/deceleration rates, vehicle stability controller tends to stabilize higher dynamics of the vehicle by correcting longitudinal, lateral, and roll accelerations. In this paper, a finite-horizon optimal solution to vehicle stability control is introduced in the presence of driver's dynamical decision making structure. The proposed concept is inspired by Nash strategy for exactly known systems with more than two players, in which driver, commanding steering wheel angle, and vehicle stability controller, applying compensated yaw moment through differential braking strategy, are defined as the dynamic players of the 2-player differential linear quadratic game.
Journal Article

Using Objective Vehicle-Handling Metrics for Tire Performance Evaluation and Selection

This paper outlines the development of a simulation-based process for assessing the handling performance of a given set of tires on a specific vehicle. Based on force and moment data, a Pacejka tire model was developed for each of the five sets of tires used in this study. To begin with, simple handling metrics including under-steer gradient were calculated using cornering stiffness derived from the Pacejka model. This Pacejka tire model was subsequently combined with a 3DOF non-linear vehicle model to create a simulation model in MATLAB/Simulink®. Other handling metrics were calculated based on simulation results to step and sinusoidal (General Motors Company) steering inputs. Calculated performance metrics include yaw velocity overshoot, yaw velocity response time, lateral acceleration response time and steering sensitivity. In addition to this, the phase lag in lateral acceleration and yaw rate of the vehicle to a sinusoidal steering input were also calculated.
Technical Paper

Identification of Road Surface Friction for Vehicle Safety Systems

A vehicle's response is predominately defined by the tire characteristics as they constitute the only contact between the vehicle and the road; and the surface friction condition is the primary attribute that determines these characteristics. The friction coefficient is not directly measurable through any sensor attachments in production-line vehicles. Therefore, current chassis control systems make use of various estimation methods to approximate a value. However a significant challenge is that these schemes require a certain level of perturbation (i.e. excitation by means of braking or traction) from the initial conditions to converge to the expected values; which might not be the case all the time during a regular drive.
Journal Article

Finite Element Modeling of Tire Transient Characteristics in Dynamic Maneuvers

Studying the kinetic and kinematics of the rim-tire combination is very important in full vehicle simulations, as well as for the tire design process. Tire maneuvers are either quasi-static, such as steady-state rolling, or dynamic, such as traction and braking. The rolling of the tire over obstacles and potholes and, more generally, over uneven roads are other examples of tire dynamic maneuvers. In the latter case, tire dynamic models are used for durability assessment of the vehicle chassis, and should be studied using high fidelity simulation models. In this study, a three-dimensional finite element model (FEM) has been developed using the commercial software package ABAQUS. The purpose of this study is to investigate the tire dynamic behavior in multiple case studies in which the transient characteristics are highly involved.
Technical Paper

On the Relation between Rotor Asymmetry and Brake Squeal

The squealing of disk and drum brakes is still a major problem to design engineers. It has been observed by Fieldhouse and others that the introduction of asymmetries into the brake rotor can lead to a reduction of brake noise. However this insight has not yet solved the squeal problem. One reason for this is that it is not a priori obvious which kind of asymmetries of the rotor are preferable and which ones are not. This lack of knowledge most likely originates from the fact that most models explaining disk brake squeal rely on a symmetric rotor. In this paper, models for disk brake squeal are presented which are suitable to study asymmetric brake rotors. The excitation mechanism for squeal is explained by the formulation of a stability problem. It is shown that multiple eigenfrequencies of the rotor make it extremely sensitive to self-excited vibrations, i.e. squeal.
Technical Paper

A Comparison of a Semi-Active Inerter and a Semi-Active Suspension

Inerters have become a hot topic in recent years, especially in vehicle, train, and building suspension systems. The performance of a passive inerter and a semi-active inerter was analyzed and compared with each other and it showed that the semi-active inerter has much better performance than the passive inerter, especially with the Hybrid control method. Eight different layouts of suspensions were analyzed with a quarter car model in this paper. The adaptation of dimensionless parameters was considered for a semi-active suspension and the semi-active inerters. The performance of the semi-active inerter suspensions with different layouts was compared with a semi-active suspension with a conventional parallel spring-damper arrangement. It shows a semi-active suspension, with more simple configuration and lower cost, has similar or better compromise between ride and handling than a semi-active inerter with the Hybrid control.
Technical Paper

Performance Characterization and Modeling of Shim Stack Assemblies in Vehicle Shock Absorbers

A detailed study of the effects of shim stack assemblies on performance of hydraulic mono-tube vehicle shock absorbers is presented. Currently, shim stacks are modeled as blow-off valves in hydraulic models of shock absorbers. Using this simplification, important material and geometrical properties of shim stacks cannot be studied and their effects cannot be understood on overall damper performance. In this paper, shim stack deflection is investigated and a mathematical model is presented for shim stack deflection. This model is then incorporated into the mathematical model of a hydraulic damper and various properties of shim stack and their effects on damper characteristics are studied. Energy and variational methods were used to develop the mathematical model of the shim stack. The mathematical model also takes into account the sliding effects of the shims on each other when the shim stack is deflected.
Technical Paper

Analysis and Control of Displacement Transmissibility and Force Transmissibility for a Two DOF Model Based on Quarter Car Concept using a Mixed Mode Magnetorheological Fluid Mount

The chassis are subject to both road profile and engine or pump/motor vibration when a vehicle is moving on the road. The suspension is developed to reduce the effect of the road conditions to the chassis. The vibration from engine or pump/motor of hydraulic hybrid vehicles (HHV) will be also transmitted to the chassis and needs to be isolated. A mixed mode magnetorheological (MR) fluid mount is presented to isolate force vibration for a two degree of freedom (DOF) model based on quarter car concept. The MR fluid mount is designed to work in flow mode and squeeze mode separately and simultaneously. The skyhook control for the MR fluid mount is also been designed and simulated. Both displacement transmissibility and force transmissibility for each mode and for combined modes have been obtained. These simulation results present a basis for designing a more effective controller to control both the displacement transmissibility and force transmissibility.
Technical Paper

Yaw Stability Control and Emergency Roll Control for Vehicle Rollover Mitigation

In this paper a yaw stability control algorithm along with an emergency roll control strategy have been developed. The yaw stability controller and emergency roll controller were both developed using linear two degree-of-freedom vehicle models. The yaw stability controller is based on Lyapunov stability criteria and uses vehicle lateral acceleration and yaw rate measurements to calculate the corrective yaw moment required to stabilize the vehicle yaw motion. The corrective yaw moment is then applied by means of a differential braking strategy in which one wheel is selected to be braked with appropriate brake torque applied. The emergency roll control strategy is based on a rollover coefficient related to vehicle static stability factor. The emergency roll control strategy utilizes vehicle lateral acceleration measurements to calculate the roll coefficient. If the roll coefficient exceeds some predetermined threshold value the emergency roll control strategy will deploy.