Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

Drills for Long Oil Holes: A Good Potential for Recycle

2011-04-12
2011-01-1154
Recycle, Reuse, Repair is an established process for sustainability. There are many ways in which cutting tools can be recycled. Be it by reshaping a used up throwaway type tool [1] or by redesigning a tool holder for the use of unused cutting edges [2]. This paper explores the possibility of reuse of HSS drills that are used for making long oil holes in automobile parts like crankcase (cylinder block), cylinder head, crankshaft, etc. Design/manufacture of such drills is peculiar by virtue of their size and length and are also known as thick web high helix drills. Making of oil holes entails use of drills that are 500 to 600 mm long depending on the size of the component. In most of the long oil hole drilling operations, a limited portion of the drill is useable. This is because there is a possibility of fouling of the holding elements with guiding element, or with the part being drilled and the chance of accidental damage to part or machine.
Technical Paper

Cost Effective High Strength Electric Resistance Welded Tubes For Structural Applications

2010-10-05
2010-01-1912
The properties of Cold drawn electric resistance welded, as drawn (CEW-AD) tubes and Electric resistance welded (ERW) tubes are vastly different. Deformation resistance of ERW tube is less than half that of CEW-AD tube, hence not preferred for structural applications, common practice being the use of CEW-AD tubes for Chassis cross members in vehicles. A new cost effective high strength ERW tube was developed which has been proved to be superior to the currently used CEW-AD tubes in terms of mechanical properties, formability, consistency and uniformity of the properties over the tube length. The newly developed tube through use of special micro alloy grade in ERW has made it possible to eliminate some of the manufacturing processes like annealing, phosphating, cold drawing etc. which has led to considerable cost saving.
Technical Paper

Design Optimization of a Mini-Truck Hydraulic Power Steering System Based on Road Load Data (RLD)

2010-04-12
2010-01-0198
Today's automotive industry demands high quality component as well as system designs within very short period of time to provide more value added features to customers on one hand and to meet stringent safety standards on the other. To reconcile economy issues, design optimization has become a key issue. In the last few decades, many OEMs took to analytical tools like Computer-Aided-Engineering (CAE) tools in order to decrease the number of prototype builds and to speed up the time of development cycle. Although such analytical tools are relatively inexpensive to use and faster to implement as compared to the costly traditional design and testing processes: however, there are many variables that CAE tools cannot adequately consider, such as manufacturing processes, assembly, material anisotropy and residual stresses. Therefore, still smart measuring and testing techniques are required to substantiate the CAE results.
Technical Paper

Recycling of Metal Cutting Inserts: A Different Approach

2010-04-12
2010-01-0273
A large number of metal cutting inserts are used in the manufacturing of automobile parts. These are made from hard metals like Carbide, Ceramic, Cermet, PCD and CBN. Since making of these hard metal inserts involve a high amount of energy in addition to natural resources namely Titanium, Tungsten, Cobalt etc, any attempt made therefore for reusing of the used up inserts will benefit environment because this reuse will lower down the demand on natural resource. Reuse can be done in a number of ways [ 1 ]. Many of these recycling techniques involve removing the dull portion developed during the first use by re sharpening [ 2 ]. A different approach is being suggested here in which used up inserts can be used directly. This approach leads to use of the unused cutting edges /corners of the insert without any re sharpening. Thus the cost of machining becomes half of the original cost or even more depending on the application for reuse.
Technical Paper

Design for Recycle of Used Up Metal Cutting Tools

2013-03-25
2013-01-0132
For sustainability, industries are now focusing on methodologies for Recycle, Reuse, Repair of a variety of industrial material. Cutting tools used in manufacturing of automobiles have therefore become a part of it. There are many ways in which cutting tools can be recycled. Be it by reshaping a used up throwaway type tool [1] or by redesigning a tool holder for the use of unused cutting edges [2]. An automobile part was redesigned for reuse of a used up tool [3]. By reforming, very large size grinding wheel used for crankshaft grinding can be reused after it gets smaller in diameter during crankshaft grinding operation [4]. This paper deals with two more implemented ideas to show that with a redesigned tool holder it was possible to reuse used up carbide inserts and significantly cut the manufacturing cost in addition to avoid manufacturing of new inserts and thus conserve natural resources.
Technical Paper

Recycling of Used Up Crankshaft Grinding Wheels

2012-04-16
2012-01-1060
For sustainability in automobile manufacturing, recycle, reuse, and repair of used up cutting tools is now an established process. Although many types of tools were designed for one time use and then throw, an increasing awareness of the impact on the natural resources have made manufacturers to put some of these back to use or sell it back to suppliers who have put up a mechanism to extract the elements e.g. Tungsten and use it for manufacturing of new tools. There are many ways in which cutting tools can be recycled. Be it by reshaping a used up throwaway type tool [1], by redesigning of a tool holder for the use of unused cutting edges [2] or reusing short length drills that are used in making of long oil holes in crank case, cylinder head, cam shaft or connecting rods [3]. This paper demonstrates successful use of used up crankshaft grinding wheels.
Technical Paper

Test Methodology with Shock Loads and Fatigue Limit of Press Fitted Gears on Shaft

2013-11-27
2013-01-2794
In case of new generation of commercial vehicles, three shaft transmissions are designed with press fitted gears on counter shaft. It allows user to save the cost of transmission manufacturing by considerable amount. In case of heavy commercial vehicles, which are being used in abusive conditions such as mining and off-road applications, it becomes absolutely necessary to ensure that the gears press fit should withstand the continuous loads and impact loads. There are design guidelines available to ensure proper fit and torque carrying capacity between the mating parts. Still, there are gear slippage, shaft and gear breakage failures in the field. In this scenario, there is a need to develop bench test procedure which will capture such failures in the prototype stage. Looking at the failures in the field, it is necessary to capture all above hidden failures in design validation phase.
Technical Paper

Transient 1D Mathematical Model for Drum Brake System to Predict the Temperature Variation with Realistic Boundary Conditions

2017-01-10
2017-26-0299
Brake system is the most important system in the vehicle considering the overall vehicle safety and speed control. Brake applications are repetitive during a city traffic and hilly terrain on downhill gradient. Frequent braking gives rise to an overheating of the brake drum and its components. Braking operations at high temperature gives rise to problems like reduced deceleration due to loss of brake pad friction characteristics, pad softening and sticking to drum, pad distortion and wear etc. All these factors collectively result in deterioration of the braking performance and reduction of brake pad durability with time. Till date most of the thermal analysis performed for brake drum heating are through physical testing using brake system prototypes and by means of CFD tools. These methods are time consuming and expensive. There is a need for an alternative method to reduce physical trials and prototype building and reduce dependency on CFD analysis.
Technical Paper

Critique of Torsional Vibration Damper (TVD) Design for Powertrain NVH

2017-01-10
2017-26-0217
Crank train torsional vibration is an important aspect for design and development of Powertrain for NVH refinement and durability. Crank train torsional vibration parameters like angular acceleration of flywheel or twist, depends upon various design parameters like geometry of crankshaft, mass of flywheel, stiffness of clutch, mass of pulley etc. It also depends upon engine operating conditions like engine speed, engine load, combustion peak pressure and combustion pressure variation etc. Most of these parameters are decided by engine power, torque, engine architecture and packaging constraints. Addition of torsional vibration damper (TVD), which works on the principle of tuned dynamic absorber, is commonly deployed design solution to control the torsional vibrations as well as stresses (to improve durability of crank train) induced in crank train assembly at specified modal frequency.
Technical Paper

NVH Refinement of Small Gasoline Engine through Digital and Experimental Approach

2017-01-10
2017-26-0211
Today’s competitive market demands for low cost passenger cars with lighter, smaller size, peppy response and fuel efficient engines and having world class NVH refinement levels. For such requirements, it is essential to optimize the product starting from the design conceptual stage, considering all performance aspects. Generally, three cylinder engines, due to less reciprocating masses, compared to four-cylinder engine, are said to be fuel efficient for the same capacity. Nevertheless, NVH problems caused by inherent imbalance forces and couples remain as drawback of the three-cylinder engine. However, through optimal design of the crank train, control of cylinder to cylinder pressure variation, stiffening of the engine structure, optimizing the integration with a vehicle through proper design of mounts, NVH refinement levels can be improved.
Technical Paper

Evaluation of Cylinder Head Bolts for Torque - Tension Characteristics for Ensuring Sealing Performance of Single Layer Steel Gasket

2010-04-12
2010-01-1315
IC Engine manufacturers are constantly in pursuit of better sealability of cylinder head and engine block interface for meeting performance and durability targets. In order to overcome variation in torque - tension characteristics of cylinder head bolt because of friction variations, yield based clamping are being extensively adopted. Current study is done on torque - tension characteristics of a cylinder head bolt with a controlled quality. The paper enumerates the experimental setup representing a sub 1 liter all aluminum engine's head-block joinery. Studies on torque - tension characteristics of cylinder head bolt and the effect of sealing interface using a cost effective single layer steel gasket are being discussed in the paper. Subject work has led to a successful implementation of angular torque parameters on head bolts to meet functional and durability targets.
Technical Paper

Transmission Breather Evaluation

2019-01-09
2019-26-0339
Breather assembly is mounted on transmission to maintain the pressure equilibrium inside transmission. Breather allows the transmission to breathe air when the air inside transmission expands or contracts due to heating and cooling of lubricating oil during vehicle running. Breather allows the hot air to escape and cool air to enter into the transmission to prevent overheating issue. Failure of breather assembly can lead to pressure buildup inside transmission and further leading to leakage from transmission oil seals. Oil leakage through the breather assembly is governed by parameters such as opening pressure, location and orientation of breather etc. The transmission undergoes different operating conditions of input speed, load, temperature, inclination etc. Also, breather assembly is designed and positioned in such a way that there is no leakage through breather due to oil splash inside the transmission.
Technical Paper

Gearshift Quality Sensitivity Analysis

2019-01-09
2019-26-0328
Gearshift quality is a perceived quality parameter. Hence, is getting much importance because of the increased awareness about comfortable and refined driving experience, especially in the case of passenger cars. When the topic of gearshift feeling is broached in manual transmission vehicles, synchronizer pack (shifter sleeve, engaging gear, strut, synchronizer and gear synchro ring assembly) have been the focus point for optimization. Synchronizer type (single, double or triple cone), lining material, datch chamfer angle of shifter sleeve/synchro ring of gear/synchronizer, all of these have been extensively studied in the past to improve the gearshift quality. With stringent timelines for vehicle development, OEMs prefer to use off-the-shelf powertrain systems developed by powertrain manufacturers. Due to this, avenues to refine gearshift feel gets reduced to a large extent and hence refinement becomes difficult.
Technical Paper

Development of Hose and Pipe Assembly for Automatic Transmission Cooling System

2019-01-09
2019-26-0327
Rubber hose and metallic pipe with crimped joints are extensively used in steering system assembly, transmission oil cooler system, brake system etc. to carry hydraulic fluid or lubricants from one place to another. The pipe and rubber hose assembly provides necessary flexibility for complex routing on the vehicle level. Design of hose and pipe assembly for this application are different due to difference in operating pressure and temperature requirement for vehicle application. This paper defines the criteria for design and validation of hose & pipe assembly used to connect automatic transmission with the cooler. Crimped joints are validated for their separation force, leakages, ability to withstand pressure pulsations, burst test etc. Parameters which influence the hose & pipe assembly durability are pipe end flaring dimensions, type of crimping, reinforcement type, its size, material and pattern, rubber material properties, crimping force, effective crimping diameter etc.
Technical Paper

Improvement in Shift Quality in a Multi Speed Gearbox of an Electric Vehicle through Synchronizer Location Optimization

2017-03-28
2017-01-1596
Electrical and Series Hybrid Vehicles are generally provided with single speed reduction gearbox. To improve performance and drive range, a two-speed gearbox with coordinated control of traction motor and gearshift actuator is proposed. For a two-speed gearbox, gearshift without clutch would increase the shifting effort. Active Synchronization is introduced for a smoother gearshift even without clutch. The quality of gearshift is considered as a function of applied shift force and time taken. To enhance the quality of the gearshift further, the location of the synchronizer in the transmission system is optimized. To validate the improvement in the quality of the gearshift, a mathematical model of the two-speed gearbox incorporating proposed location of synchronizer assembly along with active synchronization is developed. The qualitative and quantitative analysis of the results achieved is presented.
Technical Paper

Fiber Reinforced Plastic Durability: Nonlinear Multi-Scale Modeling for Structural Part Life Predictions

2019-01-09
2019-26-0278
OEMs are seeking to develop vehicle light weighting strategies that will allow them to meet weight and fuel economy targets hence increasingly shifting their focus towards incorporating lighter material solutions at mass produced scales. Composites are seen by automotive manufacturers as the solution to lightweight vehicles without affecting their performance. More and more parts are made of short fiber reinforced plastics (SFRP) as well as continuous fiber composites. However, replacing metals by composites requires a new design approach and a clear understanding of the composite behavior. This paradigm however requires a dedicated tool for composite design in order to take into account the specific composite behavior. Traditional design tools are not able to state accurately the composite material behavior and sometime leading to use high safety of factors and lack of confidence in the design.
X