Refine Your Search

Topic

Search Results

Viewing 1 to 10 of 10
Technical Paper

Optimization of Brake Pedal Feel and Performance for Dual Air Over Hydraulic System on Light Commercial Vehicles

2010-10-05
2010-01-1888
In current scenario, Light Commercial Vehicle segment (7 ton - 9.6 ton) is gradually experiencing a shift in the focus from being just a goods carrier to a vehicle which is developed to take care of driver's safety and comfort in terms of better ergonomics and aesthetics. As compared to their conventional counterparts the new generation Light Commercial Vehicles are better equipped and tuned to cater to the changing needs of the consumers. In view of this, refinement at the sub system level is becoming far more critical. On the same lines, the present work discusses a refined brake system for Light Commercial Vehicles where the conventional pneumatic system is replaced with Dual Air Over Hydraulic (DAOH) to achieve cost and weight advantages without compromising on its performance. However, during the development process, a lot of issues were observed with respect to the braking performance and the brake pedal feel.
Technical Paper

Thermal Management in Engine Compartment for Efficient Working of the Intercooler on a Rear Engine Vehicle

2012-04-16
2012-01-1044
This paper is related to a vehicle with rear engine which is turbo charged and inter cooled. Due to packaging constraints the intercooler was placed in front of turbocharger and was exposed to hot air radiated out from the turbo charger. This was in turn reducing the efficiency of the intercooler. In such scenario, it is essential to shield the turbo charger from the intercooler for proper hot air management. Also rear engine vehicles don't have the benefit of ram air affect. This necessitates increasing the air entering in to the core of the intercooler. Both the above mentioned issues associated with such a vehicle was resolved by ensuring that the hot air from turbo-charge is guided away from the intercooler as well as the air flow to Intercooler is increased. Guiding or throwing out the hot air away from Intercooler was done by introducing a heat shield or a baffle between the two.
Technical Paper

Improvement in Vehicle Handling through Optimization of Steering System Compliance

2012-09-24
2012-01-1938
Recent infrastructural developments and emerging automotive market in India has given an impetus to the transportation industry and has led to high end research activities in synchronization with growing customer demands and competition especially in last decade. Since average speeds in India has gone up from 50 kmph in the year 2000 to almost 100 kmph in 2011, even the Light Commercial Vehicles (5 to 9.6T) are gradually experiencing a shift from low speed to high speed goods carrier. These new age vehicles are developed with a driver centric outlook towards safety and comfort. They are better optimized and equipped to the changing needs of the consumer and road conditions. Increase in vehicle speed poses many challenges in terms of occupant safety and control. In view of this, refinement of different vehicle handling parameters with respect to steering system compliance becomes far more critical.
Technical Paper

Design for Cabin Tilting System Employing Single Torsion Bar Using Taguchi Optimization Method

2012-09-24
2012-01-2032
Designing a cabin tilting system for Light Commercial Vehicles using a single torsion bar becomes challenging considering the operator safety and stringent design weight targets. Performance of a good tilting system entirely depends on cabin mass and location of centre of gravity with respect to (w.r.t) to tilting pivot point. Cabin Mass and COG location are very difficult to estimate while designing a new cabin as it is dependent on the maturation of all other cabin aggregates and also the accessories added by the customer. Incorporation design parameter changes like increasing cab tilting angle and increasing torsion bar length, in the later stages of product development, becomes expensive. The objective of this paper is to come up with an optimum design of a single torsion bar tilting employing “Taguchi optimization” for deciding the optimum levels of control factors, which ensures desired performance (i.e tilting effort vs.
Technical Paper

Improving Fuel Economy of Commercial Vehicle by Introducing Optimized Electro-Magnetically Coupled Fan Drive

2016-09-27
2016-01-8054
Increasing fuel cost and constant pressure to maximize the fuel economy are forcing OEMs in India to look for alternate engine cooling mechanism which will minimize the power take off from the engine without affecting the system reliability. Aim of this paper is to analyze the potential benefit of incorporating Electro-magnetic fan (EMF) drive in terms of fuel economy and reduced load on the engine. These benefits were compared with the conventional viscous coupled fan drive system. In vehicle with viscous coupling, fan RPM is based on the ram air temperature at coupling face which takes heat from turbo-charged air and coolant. On the other hand, EMF drive have a separate controller and control the fan RPM based on the coolant temperature enabling itself to respond directly to changes in the heat load as compared to viscous coupling having indirect representation of Coolant/charged air temperature.
Technical Paper

Derivation of Test Schedule for Jerk Test on Manual Gearbox Using Road Load Data

2019-01-09
2019-26-0347
Shock loads/Jerk is a major cause of gearbox failure which occurs during abusive driving condition. In passenger car torque spikes are experienced by the transmission during launch/sudden clutch release events on flat road or off-road. Whereas, in case of commercial vehicle torque spikes are generated while operation in mines and off-road application especially in tipper vehicles. Torque spikes experienced by the gearbox can lead to gear failure, gear slippage and structural failure of housing. Research has been done till now to improve the design of gearbox to address such failures. However, with increased focus on transmission downsizing and improved vehicle performance (by weight reduction and more powerful engine) it is necessary to have optimum design to meet transmission life. This paper discuss the test setup and methodology used to simulate the torque spikes on test bench. To develop the test procedure huge data was collected on commercial vehicles.
Technical Paper

Identification of Gear Shift Quality as a Key Attribute in Commercial Vehicle Development

2017-11-27
2017-01-7011
Indian automotive market has grown extremely competitive in the recent past. In order to meet the ever growing expectations of the customers, automobile manufacturers are compelled to offer their products under superior quality with supreme comfort. Customers wish of high levels of tactile comfort in the cabin compartment and effortless operation of peripherals will result in negligible fatigue and a pleasant drive, needs to be duly fulfilled. One has to focus more on Gear shift lever and Steering wheel, which are being the most sensitive tactile points in an automobile. The gear shift lever knob is frequently used and significantly influences the perception of the shift comfort for a driver during actual vehicle application.
Technical Paper

High Voltage Battery (HVB) Durability Enhancement in Electric Mobility through 1D CAE

2020-08-18
2020-28-0013
The public transport in India is gradually shifting towards electric mobility. Long range in electric mobility can be served with High Voltage Battery (HVB), but HVB can sustain for its designed life if it’s maintained within a specific operating temperature range. Appropriate battery thermal management through Battery Cooling System (BCS) is critical for vehicle range and battery durability This work focus on two aspects, BCS sizing and its coolant flow optimization in Electric bus. BCS modelling was done in 1D CAE software. The objective is to develop a model of BCS in virtual environment to replicate the physical testing. Electric bus contain numerous battery packs and a complex piping in its cooling system. BCS sizing simulation was performed to keep the battery packs in operating temperature range.
Technical Paper

Experimental Analysis of Prominent Factors Affecting Evaporator Frosting in a Mobile Air-Conditioning (MAC) System

2020-08-18
2020-28-0014
In an automotive air conditioning system, evaporator is well designed for effective heat transfer between refrigerant and air flowing over the evaporator. This cold and dehumidified air obtained at evaporator is then supplied to passenger cabin. There are various parameters like air flow over evaporator, ambient temperature, humidity condition and condensate drain mechanism which can cause frost formation over the evaporator core. This study presents the probable causes of frost formation and their effects on the performance of evaporator and thus affecting overall performances of the automotive air conditioning system. In this study effect of variation in four major independent factors such as poor response of thermistor, undercharged refrigerant system and overcharged refrigerant system, drop in air flow by blower due to clogged air-filter, and also the effect of type of compressor has been studied.
Technical Paper

Thermal Management System and Performance Characteristics of Electric Vehicle

2020-08-18
2020-28-0022
Thermal Management System (TMS) is equally or more important part of Battery Electric (BEV)/Hybrid Electric vehicle (HEV) than an internal combustion engine (ICE) vehicle. In an ICE vehicle, TMS ensures performance of power train/engine, after treatment/exhaust system and HVAC (Climate control) whereas it connected with safety and Range anxiety elimination additionally for the case of Electric Vehicle. Electric powertrain is not a new technology to the world but the technology is evolving in last few decades, to overcome the cost and make it commercially viable, charging infrastructural development and elimination of Range Anxiety. In last few years, Indian automotive industry has taken some major steps towards electrification journey for both passenger car and commercial vehicle. In BEVs, Battery Cooling or Battery thermal management System (BTMS or BCS) and Traction cooling system (TCS) are couple with nearly conventional HVAC circuit used in any ICE vehicle.
X