Refine Your Search

Topic

Author

Search Results

Technical Paper

Customized and Market Specific Thermal Robust Clutch System Solution

2021-09-21
2021-01-1239
The goal of reducing fuel consumption and CO2-Emission is leading to turbo-charged combustion engines that deliver high torque at low speeds (down speeding). To meet NVH requirements damper technologies such as DMF (Dual Mass Flywheel) are established, leading to reduced space for the clutch system. Specific measures need to be considered if switching over from SMF (Single Mass Flywheel) to DMF [8]. Doing so has an impact on thermal behavior of the clutch system, for example due to reduced and different distribution of thermal masses and heat transfer to the surroundings. Taking these trends into account, clutch systems within vehicle powertrains are facing challenges to meet requirements e.g. clutch life, cost targets and space limitation. The clutch development process must also ensure delivery of a clutch system that meets requirements taking boundary conditions such as load cycles and driver behavior into account.
Technical Paper

Methodology to Assess Headlamp Performance in Virtual Environment and its Correlation with Real World Driving Conditions

2021-09-22
2021-26-0130
Automotive exterior lighting systems has to meet several regulatory requirements & manufacture specific internal standards to achieve desired performance. These test specifications are usually generic in nature and formulated mainly to validate the standalone product under standard laboratory conditions. Most of the time these specifications are common for entire vehicle portfolio. The rationale of these standards is to define the basic illuminance in the safe braking distance. Thus, however, using the requirements in these standards to evaluate the performance of front lighting systems is only qualitative. Research on working out method for quantitative evaluation of front lighting system is necessary [1] In practice, however, the luminance levels at road surfaces are usually very dynamic; depend largely on the variations in vehicle parameters, ambient weather conditions, road surface uniformities and effects of light intensity & color contrasts on target visibility.
Technical Paper

A Model Based Approach to DPF Soot Estimation and Validation for BSVI Commercial Vehicles in Context to Indian Driving Cycles

2021-09-22
2021-26-0183
With India achieving the BSVI milestone, the diesel particulate filter (DPF) has become an imperative component of a modern diesel engine. A DPF system is a device designed to trap soot from exhaust gas of the diesel engine and demands periodic regeneration events to oxidize the accumulated soot particles. The regeneration event is triggered either based on the soot mass limit of the filter or the delta pressure across it. For a Heavy Duty Diesel Engine (HDDE), pressure difference across the DPF is not usually reliable as the size of the DPF is large enough compared to the DPF used ina passenger vehicle diesel engine. Also, the pressure difference across DPF is a function of exhaust mass flow and thus it makes it difficult to make an accurate call for active regeneration. This demands for a very accurate soot estimation model and it plays a vital role in a successful regeneration event.
Technical Paper

1D Modelling of Fuel Cell Losses Including the Water and Thermal Management

2021-09-22
2021-26-0225
Fuel cells plays significant role in the automotive sector to substitute the fossil fuels and complement to electric vehicles. In the fuel cell vehicles fuel cell stack is major component. It is important to have a robust fuel cell model that can simulate the behaviour of the fuel cell stack under various operating conditions in order to study the functioning of a fuel cell and optimize its operating parameters and achieve the best efficiency in operation. The operating voltage of the fuel cell at different current densities depends upon thermodynamic parameters like temperature and pressure of the reactants as well factors like the state of humidification of the electrolyte membrane. A 1D model is developed to capture the variation in voltage at different current densities due to internal losses and changes to operating conditions like temperature and pressure.
Technical Paper

Multi Axis Fatigue Test of Lift Axle Assembly through Real Time Simulation Abstract

2021-09-22
2021-26-0486
This paper discusses the test setup and methodology required to validate complete lift axle assembly for simulating the real time test track data. The correlation of rig vs track is discussed. The approach for reduction of validation time by eliminating few of the non-damaging tracks/events, its correlation with real life condition is discussed, and details are presented. With increased competition, vehicle development time has reduced drastically in recent past. Bench test procedure using accelerated test cycle discussed in this paper will help to reduce development time and cost. Process briefed in this paper can also be used for similar test specification for other structural parts or complete suspension system of heavy commercial vehicles.
Technical Paper

Development of a Rapid Vehicle Steering Cooling System Using Thermoelectrics

2021-09-22
2021-26-0517
Nowadays automotive cabin comfort has become a necessity rather than an optional feature, with customers demanding more comfort features. Thermal comfort becomes an essential part of this expectation. Since steering wheel is the first surface that the driver will touch once he enters the vehicle, maintaining thermal comfort of steering wheel becomes important, especially in tropical countries like India where a car parked in hot weather can get significantly warm inside. In this work, two design concepts for automotive steering wheel thermal control based on thermoelectric effect are depicted along with a detailed mathematical model. Thermoelectric coolers were selected for this purpose as it is solid state, compact & scalable solution to achieve rapid cooling rates. This was the desired feature expected from an integration standpoint in automotive architecture.
Technical Paper

High Voltage Battery (HVB) Durability Enhancement in Electric Mobility through 1D CAE

2020-08-18
2020-28-0013
The public transport in India is gradually shifting towards electric mobility. Long range in electric mobility can be served with High Voltage Battery (HVB), but HVB can sustain for its designed life if it’s maintained within a specific operating temperature range. Appropriate battery thermal management through Battery Cooling System (BCS) is critical for vehicle range and battery durability This work focus on two aspects, BCS sizing and its coolant flow optimization in Electric bus. BCS modelling was done in 1D CAE software. The objective is to develop a model of BCS in virtual environment to replicate the physical testing. Electric bus contain numerous battery packs and a complex piping in its cooling system. BCS sizing simulation was performed to keep the battery packs in operating temperature range.
Technical Paper

Coupled CFD Simulation of Brake Duty Cycle for Brake System Design

2021-09-22
2021-26-0360
Brake system design is intended to reduce vehicle speed in a very short time by ensuring vehicle safety. In the event of successive braking, brake system absorbs most of vehicle’s kinetic energy in the form of heat energy, at the same time it dissipates heat energy to the surrounding. During this short span of time, brake disc surface and rotor attains the highest temperatures which may cross their material allowable temperature limit or functional requirement. High temperatures on rotor disc affects durability & thermal reliability of the brake rotor. Excessive temperature on brake rotors can induce brake fade, disc coning which may result in reduced braking efficiency. To address the complex heat transfer and highly transient phenomenon during successive braking, numerical simulations can give more advantage than physical trials which helps to analyze complex 3D flow physics and heat dissipation from rotors in the vicinity of brake system.
Technical Paper

Modelling of Internal Manifold Flow Distribution in PEMFC

2021-09-22
2021-26-0340
In a Polymer Electrolyte Membrane Fuel Cell (PEMFC) uniform reaction rate is very crucial to obtain maximum performance and to maintain the life of the cells. In PEMFC stack manifold plays an important role in maintaining uniform flow distribution of reactants (hydrogen, air and coolant) to the cells. Many studies have been carried out for examining the effect of manifold on flow distribution and pressure drop. Most studies are limited to small scale level (5 to 10 kW stack). This paper describes large scale fuel cell stack manifold design, flow distribution and pressured contours which is suitable for automotive vehicles (30 to 50 kW). The design consists of simplified scaled up fuel cell stack with cells connected in the series. Modelled the effect of internal manifold geometry of the fuel cell stack on pressure and flow distribution to the cells.
Technical Paper

A Closed System Simulation based Methodology to Accomplish Advance Engine Calibrations towards CAFE

2021-09-22
2021-26-0352
The automotive engineering fraternity is facing tremendous challenges to improve fuel economy and emissions of the internal combustion engine. The stringent CAFÉ standards for CO2 emissions are expected to become further demanding as time progresses. Indian OEM engineering experts have been considering various technology options to improve vehicle fuel economy. However, the time and costs associated with the development of these strategies and technologies remains a point of major concern and challenge. The potential of a technology to reduce fuel consumption can be estimated in three basic ways. One approach involves developing an actual prototype engine and vehicle with the technologies under evaluation, performing the actual measurements. Some variability from test to test is although expected, this method is the most accurate but time consuming and very expensive.
Technical Paper

Approach to Model AC Compressor Cycling in 1D CAE with Enhanced Accuracy of Cabin Cooldown Performance Prediction

2021-09-22
2021-26-0430
In previous work, AC Compressor Cycling (ACC) was modeled by incorporating evaporator thermal inertia in Mobile Air Conditioning (MAC) performance simulation. Prediction accuracy of >95% in average cabin air temperature has been achieved at moderate ambient condition, however the number of ACC events in 1D CAE simulation were higher as compared to physical test [1]. This paper documents the systematic approach followed to address the challenges in simulation model in order to bridge the gap between physical and digital. In physical phenomenon, during cabin cooldown, after meeting the set/ target cooling of a cabin, the ACC takes place. During ACC, gradual heat transfer takes place between cold evaporator surface and air flowing over it because of evaporator thermal inertia.
Technical Paper

Aero Drag Improvement Study on Large Commercial Vehicles Using CFD Lead Approach

2021-09-22
2021-26-0424
Nowadays, E- commerce and logistics business model is booming in India with road transport as a major mode of delivery system using containers. As competition in such business are on rise, different ways of improving profit margins are being continuously evolved. One such scenario is to look at reducing transportation cost while reducing fuel consumption. Traditionally, aero dynamics of commercial vehicles have never been in focus during their product development although literature shows major part of total fuel energy is consumed in overcoming aerodynamic drag at and above 60 kmph in case of large commercial vehicle. Hence improving vehicle exterior aerodynamic performance gives opportunity to reduce fuel consumption and thereby business profitability. Also byproduct of this improvement is reduced emissions and meeting regulatory requirements.
Technical Paper

Multi-Axial Road Simulation for Component Level Validation of Engine Mount Structure and Elastomer

2021-09-22
2021-26-0452
Today, reducing the vehicle development time is a very crucial task. In the early development stages, the limited time and few vehicle prototypes are available for validation. In such scenarios, durability validation of different design iterations of critical components like engine mounts, with respect to the real road usage is a challenge. Road simulation testing in a laboratory is a reliable approach to fatigue and durability tests for the evaluation of platforms, components and subassemblies. Durability evaluation of engine mount is, generally, performed either at assembly level, using multi-axial road simulation approach or at component level, using uniaxial sinusoidal load testing. The new testing approach here allows testing of engine mounts at component level using road simulation approach by applying multi-axial loads or deflections as per the real road usage conditions.
Technical Paper

Simulation Techniques for Rubber Gasket Sealing Performance Prediction

2021-09-22
2021-26-0388
Engine performance and emission control are key attributes in the overall engine development in which sealing of the mating components plays an important role to achieve the same. Rubber gaskets are being used for sealing of different Internal Combustion (IC) engine components. Gasket sealing performance needs to be ensured at initial development stage to avoid the design changes at the later part of development cycle. Design changes at later stage of development can potentially influence parameters like optimization, cost and time to market. Demand of utilization of virtual tools (front loading) is growing with the increasing challenges like stringent product development cycle time and overall project cost. This paper describes a procedure to simulate the rubber gasket and groove for different material conditions (dimensional tolerances). This entire simulation is divided into two phases. In the first phase of the simulation, Load Deflection curve (LD curve) is established.
Technical Paper

Evolution of Multi Axis Suspension Test Rig from Reaction Type to Inertial Type

2021-09-22
2021-26-0471
This paper highlights the transition of multi-axis suspension test rig from fixed reacted type to semi-inertial type and the benefits derived thereof in simulation accuracies. The critical influence of ‘Mx’ and ‘Mz’ controls on simulation accuracies has been highlighted. The vital role of ‘Mz’ control in the resonance of wheel pan along ‘Z’ axis and thereof arresting unwanted failures modes in spindle has been duly emphasized. Finally, the role of constraints and boundary conditions on simulation accuracies has been demonstrated by replacing the reaction frame with vehicle body.
Technical Paper

Simulink Model for SoC Estimation using Extended Kalman Filter

2021-09-22
2021-26-0382
State of Charge (SoC) estimation of battery plays a key role in strategizing the power distribution across the vehicle in Battery Management System. In this paper, a model for SoC estimation using Extended Kalman Filter (EKF) is developed in Simulink. This model uses a 2nd order Resistance-Capacitance (2RC) Equivalent Circuit Model (ECM) of Lithium Ferrous Phosphate (LFP) cell to simulate the cell behaviour. This cell model was developed using the Simscape library in Simulink. The parameter identification experiments were performed on a new and a used LFP cell respectively, to identify two sets of parameters of ECM. The cell model parameters were identified for the range of 0% to 100% SoC at a constant temperature and it was observed that they vary as a function of SoC. Hence, variable resistance and capacitance blocks are used in the cell model so that the cell parameters can vary as a function of SoC.
Technical Paper

Connected Vehicles - A Testing Approach and Methodology

2021-09-22
2021-26-0450
With the introduction of Connected Vehicles, it is possible to extend the limited horizon of vehicles on the road by collective perceptions, where vehicles periodically share their information with other vehicles and servers using cloud. Nevertheless, by the time the connected vehicle spread expands, it is critical to understand the validation techniques which can be used to ensure a flawless transfer of data and connectivity. Connected vehicles are mainly characterized by the smartphone application which is provided to the end customers to access the connectivity features in the vehicle. The end result which is delivered to the customer is through the integrated telematics unit in the vehicle which communicates through a communication layer with the cloud platform. The cloud server in turn interacts with the final application layer of the mobile application given to the customer.
Technical Paper

Bus NVH Refinement: A Journey towards Comfortable Future

2021-09-22
2021-26-0272
The future of bus transit in new millennium is promising. This optimism is based on an anticipated long-term slowdown in growth of suburbs and revitalization of central cities. It reflects and escalates the public concern with traffic congestion, sprawl and pollution. This calls for double the use of public transport to address above issues. It calls for changing the mind-set of society towards public transports like buses, coaches etc. This could happen if bus design ensures right comfort, safety and TCO by ensuring refined bus transport. Hence, it is responsibility of OEMs to provide the new generation buses and coaches, which will ensure the public demands of comforts in terms of NVH refinement. This paper covers the unique approach used to convert the existing bus NVH refinement to next level as a short-term solution and with the intention of articulating NVH strategies for new generation bus development.
Technical Paper

Thermal Management System and Performance Characteristics of Electric Vehicle

2020-08-18
2020-28-0022
Thermal Management System (TMS) is equally or more important part of Battery Electric (BEV)/Hybrid Electric vehicle (HEV) than an internal combustion engine (ICE) vehicle. In an ICE vehicle, TMS ensures performance of power train/engine, after treatment/exhaust system and HVAC (Climate control) whereas it connected with safety and Range anxiety elimination additionally for the case of Electric Vehicle. Electric powertrain is not a new technology to the world but the technology is evolving in last few decades, to overcome the cost and make it commercially viable, charging infrastructural development and elimination of Range Anxiety. In last few years, Indian automotive industry has taken some major steps towards electrification journey for both passenger car and commercial vehicle. In BEVs, Battery Cooling or Battery thermal management System (BTMS or BCS) and Traction cooling system (TCS) are couple with nearly conventional HVAC circuit used in any ICE vehicle.
Technical Paper

Evaluation of Potential Benefit of 6 × 2 Over 6 × 4 Drive Mode to Improve the Fuel Economy on Heavy Commercial Vehicle

2009-04-20
2009-01-1359
Reduction in the drivetrain losses of a vehicle is one of the important contributing factors to amplify the fuel economy of vehicle, particularly in heavy commercial vehicle. The conversion of 6 × 4 drive vehicle into 6 × 2 drive has a benefit of improving the fuel economy of a vehicle by reducing the drivetrain losses occurring in the second rear axle. It was cultured by calculation that in 6 × 2 drive the tractive force available at the wheels, of heavy commercial vehicle with GVW of 44 tons and above, will be much higher than the frictional force transmission capacity of tires, when the engine is producing peak torque on the driving duty cycle like going on steep gradient road. In such situations the tires will start to slip and may result in deteriorating the fuel economy and excessive tire wear. On the other side the flat road driving duty cycle in 6 × 2 drive will give better fuel economy than 6 × 4 drive.
X