Refine Your Search

Topic

Search Results

Technical Paper

Brake Groan Noise Investigation and Optimization Strategies for Passenger Vehicles

2021-09-22
2021-26-0301
Groan is a low frequency noise generated when moderate brake pressure is applied between the surfaces of the brake disc and the brake pad at a low-speed condition. Brake groan is often very intense and can cause large numbers of customer complaints. During a groan noise event, vehicle structure and suspension components are excited by the brake system and result in a violent event that can be heard and felt during brake application. The cause of noise is friction variation of stick-slip phenomenon between friction material and disc. Creep groan is the structure-borne noise that is related to dynamic characteristic of the vehicle. However, it has been mainly improved through friction material modifications in the past. In this paper, transfer path of creep groan noise was analyzed by means TPA and structural countermeasure to creep groan noise was suggested. This paper discusses the approach for prediction and mitigation of brake groan noise for passenger vehicles having disc brakes.
Technical Paper

Evolution of Multi Axis Suspension Test Rig from Reaction Type to Inertial Type

2021-09-22
2021-26-0471
This paper highlights the transition of multi-axis suspension test rig from fixed reacted type to semi-inertial type and the benefits derived thereof in simulation accuracies. The critical influence of ‘Mx’ and ‘Mz’ controls on simulation accuracies has been highlighted. The vital role of ‘Mz’ control in the resonance of wheel pan along ‘Z’ axis and thereof arresting unwanted failures modes in spindle has been duly emphasized. Finally, the role of constraints and boundary conditions on simulation accuracies has been demonstrated by replacing the reaction frame with vehicle body.
Journal Article

A Case Study of Reaction Time Reduction of Vehicle Brake System

2011-09-18
2011-01-2379
There has to be a good co-relation/ relationship between the pedal effort applied, pedal travel, deceleration level achieved and stopping distance for “good brake feel”. Brake feel also depend upon the time lag between the force applied on brake pedal and the response of braking system. Hence “brake feel” can be improved by reducing the response time of the brake system. Many vehicles are having “poor brake feel” complaints, pertaining to the above mentioned reasons. This paper relates to an improved brake system for automobile in which reduction in reaction time was done by artificially increasing differential pressure head across vacuum booster diaphragm. Brake booster is given an input of compressed air to the valve body during actuation, thereby increasing the differential pressure across the diaphragm. The compressed air is bled from turbocharger-intercooler of the vehicle which is stored in a reservoir, with one way valve, while cruising.
Technical Paper

Virtual Development of Optimum Twist Beam Design Configuration for a New Generation Passenger Car

2007-08-05
2007-01-3562
It is customary to select a twist beam rear suspension for front wheel driven small and medium range passenger cars. Besides better primary / secondary ride comfort, roll stiffness tuning ability, ease of assembly & good packaging solutions than the conventional semi trailing arm/ rigid axle suspensions, twist beam suspension system accentuate the concentration required in placing & orienting the cross beam to achieve certain imperative kinematical characteristics. In order to make the solutions of the required kinematical targets viable, it is vital to have the packaging space and stress concentration within yield limits given the weight & cost targets. This paper presents the work done on twist beam type suspension for a new generation entry level B-Class hatchback vehicle developed. To reduce the time consumed in validation of different design proposals a virtual validation process was developed.
Technical Paper

A Simple, Cost Effective, Method of Evaluating Bump Steer and Brake Steer, and Achieving Correlation with ADAMS Analysis

2008-04-14
2008-01-0227
This paper proposes a cost effective method, with simple techniques, to evaluate Bump Steer and Brake Steer on a rigid axle vehicle under dynamic conditions. A relationship between calculated values, measured values and a subjective assessment of the vehicle lateral deviation is established. An array, of inter-relationship of the parameters such as offset of steering arm, draglink length, front spring stiffness, height of spring hanger bracket is done. Percentage of influence of the parameter change on the performance of the vehicle is evaluated and standard statistical analysis is used to arrive at inter-relationship of various parameters and ranking of their influence on lateral deviation of the vehicle under braking is established, there by resulting in reduction in iterative process. The results obtained display a good correlation with ADAMS Analysis to the tune of 90% and are in agreement with subjective assessment.
Technical Paper

Suspension Testing using Wheel Forces on a 3 DOF Road Load Simulator

2008-04-14
2008-01-0223
The use of Wheel Force Transducers (WFTs) to acquire data for laboratory simulation is becoming standard industry practice. However, in test rigs where we have only the suspension module and not the complete vehicle, does the reproduction of the orthogonal forces and moments at the wheel centre guarantee an accurate replication of the fatigue damage in the suspension components? The objective of this paper is to review the simulation methodology for a highly non-linear suspension in a 3 DOF (degree-of-freedom) suspension test rig in which the simulation was carried out using only the three orthogonal loads and vertical displacement. The damage at critical locations in the suspension is compared with that on the road and an assessment of the simulation using the WFT is made based on a comparison of the damage on the road vs. the rig.
Technical Paper

Regenerative Braking Strategy for an Unaltered Mechanical Braking System of a Conventional Vehicle Converted into a Hybrid Vehicle

2013-01-09
2013-26-0155
Regenerative braking has become one of the major features for a hybrid vehicle as it converts brake energy into electrical energy storable into battery and leads to an increase in overall fuel efficiency of the vehicle. Traditional regenerative braking systems are designed such that the mechanical braking force from the friction brakes is varied in order to get maximum electric braking. This is the optimum method; however, such a system calls from electronics (Anti-lock Braking System) for regulation of mechanical braking leading to an increased cost. In this paper, the authors present a new strategy for implementing a regenerative brake strategy without changing the mechanical brake system of a conventional vehicle converted to a hybrid vehicle. The electric motor that serves as the traction motor or the Integrated Starter Generator (ISG) system, is used for regenerative braking also. There is no change in the other vehicle specifications as compared to the conventional vehicle.
Technical Paper

An Engine Stop Start System with Driver Behavior Learning and Adaption for Improving the User Experience

2018-04-03
2018-01-0609
Engine Stop/Start System (ESS) promises to reduce greenhouse emissions and improve fuel economy of vehicles. Previous work of the Authors was concentrated on bridging the gap of improvement in fuel economy promised by ESS under standard laboratory conditions and actual driving conditions. Findings from the practical studies lead to a conclusion that ESS is not so popular among the customers, due to the complexities of the system operation and poor integration of the system design with the driver behavior. In addition, due to various functional safety requirements, and traffic conditions, actual benefits of ESS are reduced. A modified control algorithm was proposed and proven for the local driving conditions in India. The ways in which a given driver behaves on the controls of the vehicles like Clutch and Brake Pedals, Gear Shift Lever were not uniform across the demography of study and varied significantly.
Technical Paper

Investigation and Reduction of Brake Squeal and Groan Noise

2015-09-27
2015-01-2687
Brake noise is one of the common complaints and an irritant not just for the vehicle occupants but equally for the passers-by. Brake noise is actually vibration that is occurring at a frequency that is audible to the human ear. This occurrence of brake noise like brake squeal (>1 kHz) and groan (<1 kHz) is often very intense and can lead to vehicle complaints. During a brake noise event, vehicle basic structure and suspension system components are excited due to brake system vibration and result in a resonance that is perceived in the form of a noise. Proposed work discusses an experimental study that is carried out on a vehicle for addressing concern regarding disc brake squeal and groan noise. Based on the preliminary inputs, vehicle level study was carried out in order to simulate the problem and objectively capture its severity.
Technical Paper

An Effort to Build Mathematical Model using Time Series Analysis to Aid Steering Auto-Correction in Heavy Commercial Vehicle during High Speed Braking

2015-09-29
2015-01-2763
Steering pull during high speed braking of heavy commercial vehicles possesses a potential danger to the occupants. Even with negligible wheel-to-wheel brake torque variation, steering pull during the high speed braking has been observed. If the steering pull (i.e. steering rotation) is forcibly held at zero degree during high speed braking, the phenomena called axle twist, wheel turn and shock absorber deflection arise. In this work the data have been collected on the mentioned measures with an intention to develop a mathematical model which uses real time data, coming from feedback mechanism to predict the values of the measures in coming moments in order to aid steering system to ‘auto-correct’. Driven by the intention, ‘Time Series Analysis’, a well-known statistical methodology, has been explored to see how suitable it is in building the kind of model.
Technical Paper

Mathematical Model to Evaluate and Optimize the Dynamic Performance of Pneumatic Brake System

2015-01-14
2015-26-0082
Pneumatic brake system is widely used in heavy truck, medium and heavy buses for its great superiority and braking performance over other brake systems. Pneumatic brake system consists of various valves such as Dual Brake Valve (DBV), Quick release Valve (QRV), Relay Valve (RV), Brake chambers. Dynamics of each valve is playing a crucial role in overall dynamic performance of the braking system. However, it is very difficult to find the contribution of each valve and pipe diameters in overall braking performance. Hence, it is very difficult to arrive a best combination for targeted braking performance as it is not possible to evaluate all combination on the actual vehicle. Hence, it is very important to have a mathematical model to optimize and evaluate the overall braking performance in early design phase. The present study is focusing on the mathematical model of a pneumatic brake circuit.
Technical Paper

Augmenting Light Weighting Horizon in Automotive

2014-04-28
2014-28-0023
Better ride and comfort, enhanced safety, reliability and durability, lower running cost as well as cost of ownership continue to be challenges for automotive OEMs. Higher fuel efficiency is considered as USP not only for lower running cost but also is hygiene factor from sustainability point of view. This has necessitated the need for Augmenting Light weighting horizon in automotive OEMs. Augmenting this leads to invention of innovative materials and processes for emerging cost competitive market. This paper focuses on technology efforts towards augmenting light weighting Horizon in Automotive. Light weighting concepts being explored by OEMs with the help of automotive component manufacturers from Powertrain - Engines & Transmission, Chassis and Suspension are discussed.
Technical Paper

Parametric Study of Hub Cum Brake Drum for Optimum Design Performance

2015-01-14
2015-26-0079
Brake drum is an important component in automotive, which is a link between axle and wheel. It performance is of utmost importance as it is related to the safety of the car as well to the passengers. Many design parameters are taken into consideration while designing the brake drum. The sensitivity of these parameters is studied for optimum design of brake drum. The critical parameters in terms of reliability, safety & durability could be the cross section, thickness of hub, interference & surface roughness between bearing and hub, wheel loading, heat generation on drum, manufacturing and assembly process. The brake drum design is derived by considering these parameters. Hence the sensitivity of these parameters is studied both virtually & physically, in detail. The optimum value of each parameter could be chosen complying each other's values.
Technical Paper

Reduction of Flow Induced Noise Generated by Power Steering Pump Using Order Analysis

2015-01-14
2015-26-0134
An interior sound quality is one of the major performance attribute, as consumer envisage this as class and luxury of the vehicle. With increasing demand of quietness inside the cabin, car manufactures started focusing on noise refinement and source separation. This demand enforces hydraulic power steering pump to reduce noise like Moan and Whine, especially in silent gasoline engine. To meet these requirements, extensive testing and in-depth analysis of noise data is performed. Structured process is established to isolate noises and feasible solutions are provided considering following analysis. a) Overall airborne noise measurement at driver ear level (DEL) inside the cabin using vehicle interior microphone. b) Airborne and Pressure pulsation test by sweeping pump speed and pressure at test bench. c) Waterfall analysis of pump at hemi anechoic chamber for order tracking and noise determination.
Journal Article

1D Mathematical Model Development for Prediction and Mitigation of Vehicle Pull Considering Suspension Asymmetry and Tire Parameters

2021-09-22
2021-26-0502
Error in suspension asymmetry or tire parameters may lead to vehicle drifting laterally from its intended straight-line path, which is called vehicle pull. Driver then needs to apply constant steering correction to maintain the vehicle in straight line which will lead to high driver fatigue and deteriorate driving experience. Manufacturing a perfectly symmetric suspension system is impractical, however an insight into the manufacturing tolerances of suspension system at the early design stage can be extremely useful. Also tire force and moment parameters at straight line operation and its maximum allowable variations will help in defining the tire parameter specifications and tolerances. The objective of this study was to develop a 1D model of suspension and tire system which can predict the torque experienced in steering and drift of the vehicle from straight line due to the tire force and moment and asymmetric suspension geometry.
Journal Article

Application of Machine Learning Technique for Development of Indirect Tire Pressure Monitoring System

2021-09-22
2021-26-0016
Tire inflation pressure has a significant impact over vehicle driving dynamics, fuel consumption as well as tire life. Therefore, continuous monitoring of tire pressure becomes imperative for ride comfort, safety and optimum vehicle handling performance. Two types of tire pressure monitoring systems (TPMS) used by vehicles are - direct and indirect TPMS. Direct systems deploy pressure sensors at each wheel and directly send pressure value to the vehicle Controller Area Network (CAN). Indirect sensors on the other hand use the information from already existing sensors and some physics-based equations to predict the value of tire pressure. Direct TPMS tend to be more accurate but have higher cost of installation while indirect TPMS comes with a minimum cost but compromised accuracy. A digital proof-of-concept study for indirect TPMS development of a non-ESP vehicle based on machine learning (ML) technique is elaborated in this paper.
Technical Paper

Optimizing Steering Column Layout and UJ Phase Angle to Enhance Vehicle Dynamics Performance

2019-02-05
2019-01-5010
Vehicle dynamics is one of the most important vehicle attributes. It is classified into three domains, the longitudinal, vertical, and lateral dynamics. This paper focuses on optimizing the lateral vehicle dynamics which is driven by the straight ahead controllability and cornering controllability of the vehicle. One of the important parameters that dictates these sub-attributes is the steering ratio. Therefore, designing the right steering ratio is critical to meet the vehicle “specific” targets. Significant amount of work has been done by many researchers on variable steering ratio by implementing variable gear ratio (VGR) rack, active steering, and steer-by-wire systems. This paper discusses the methodology and considerations to optimize the steering ratio for a constant gear ratio rack by optimizing the steering column layout, viz., orientation and the phase angle in universal joints.
Technical Paper

Model-Based System Engineering Approach for Steering Feel Simulation for Passenger Vehicles

2021-09-22
2021-26-0400
The basic function of steering system is to control the direction of the vehicle. The driver applies effort on the steering wheel and receives feedback through the steering system as a result of tire to road interaction. This feedback consists of a haptic (force) feedback which is directly felt by the driver and it is termed as steering feel. Precise steering feel gives better driving experience and is decisive factor for customer to buy a vehicle as well as for OEMs in building brand image. Along with steering parameters, suspension and tire parameters also has significant impact on steering feel. In past, modelling of the steering system was done at component level or with simplified vehicle system. Such approaches had not given accurate results of steering feel metric and resulted in incorrect steering design parameter selection. In order to replicate actual vehicle characteristics, complex and detailed modelling of steering, tire and suspension subsystems is necessary.
Technical Paper

Optimization of Drum Brake System in HCVs Using Two-Way Coupled CFD Approach

2023-11-05
2023-01-1874
The brake systems are given top priority by automotive OEMs in the development of medium and heavy commercial trucks and buses, which can carry increased loads. When trucks and buses are travelling at high speeds or crossing downhill, during braking operations, the friction faces (brake drum and liner) experience a significant rise in temperature due to the conversion of kinetic energy into heat energy within seconds. This lowers the friction coefficient at the interface, resulting in distortions, thermal cracks, hub grease burning, and overheating. Drum brake system designs must be improved and optimized to dissipate more heat from the brake drum assembly and prevent brake failure. Nowadays advance transient numerical simulations assist in the design, development and optimization of the brake system to visualize 3D flow physics and temperature variations throughout the brake duty cycles. In the current study, different Cases of drum brakes to improve cooling efficiency are evaluated.
Technical Paper

Anti- Rollback Function for Electric Vehicles without HSA/ABS System

2024-01-16
2024-26-0096
In high-end commercial vehicles, technologies like Electronic Braking Systems (EBS) help pull away the vehicle from a standstill on steep gradients with no risk of rolling back. Tata Motors has developed an indigenous Anti-Roll Back (ARB) system that effectively minimizes this risk but without the use of EBS/HSA. The ARB delivers identical functionality to the HSA feature in the EBS but autonomously, and by purely electric means. In the proposed system, the electric traction motor develops a high positive torque when the vehicle tries to roll back upon minimal accelerator pedal press. The system is autonomous in the sense that the driver does not need to press any HSA switch on the dashboard and the system works on relatively flatter road also which otherwise is not the case with HSA as it negatively affects the operation on flatter road by locking wheels and vehicle launches with a very high torque when brakes are automatically released by EBS upon threshold torque build-up.
X