Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

“Dynamic Analysis of Cabin Tilting System of Heavy Trucks Using ADAMS-View for Development of a Software Interface for Optimization”

2008-10-07
2008-01-2683
Design of a Cabin Tilting System of heavy trucks, a multi degree of freedom mechanism, is a challenge. Factors like adequate tilting angle, cabin styling, packaging, non interference of tilting system with ride comfort, forces in the system, specifications of the hydraulic system, are all very important for designing the system. Numerous considerations make the design process highly iterative hence longer design time. This paper primarily focuses on Kinematics and Dynamic analysis of the system in ADAMS and validation of system with real time testing results. Intention of this work is to make a parametric ADAMS model and link it to a Knowledge Based Engineering application to facilitate designer to quickly carry out design iterations for reducing development time. The Knowledge Based Engineering software is made using object oriented language called ‘Object Definition Language’ which has been developed using C and C++ software languages.
Technical Paper

Comparative Studies of Adhesive Joints in Automotive

2014-04-01
2014-01-0788
Use of adhesives in automotive require in-depth material, design, manufacturing & engineering knowledge. It is also necessary to understand functional requirements. For perfect and flawless adhesive joinery, the exact quantity of adhesive, its material composition, thickness of adhesive layer, substrate preparation methods for adhesive bonding, handling and curing time of the adhesive have to be studied & optimized. This paper attempts to describe different aspects of adhesive bonding in automotive industry to include: Selection of adhesives based on application and design of the components, surface preparation of adherend, designing of adhesive joint, curing conditions of adhesives, testing and validation of adhesive joints. Emphasis was given to study & verify the performance of different adhesive joints to meet end product requirements. Samples were prepared with a variety of adhesive and adherend combinations.
Technical Paper

Methodology Development to Accurately Predict Aerodynamic Drag and Lift for Passenger Vehicles Using CFD.

2016-04-05
2016-01-1600
Important vehicle performance parameters such as, fuel economy and high speed stability are directly influenced by its aerodynamic drag and lift. Wind tunnel testing to asses these parameters requires heavy investment especially when test wind tunnel is not available in the country where vehicle development center is present. Hence to save cost and to compress development time, it is essential to asses and optimize parameters of a vehicle in very early stages of development. Using numerical flow simulations optimization runs can be carried out digitally. Industry demands prediction of aerodynamic drag and lift coefficients (CD,CL) within an accuracy of a few counts, consuming minimal HPC resources and in a short turnaround time. Different OEMs deploy different testing methods and different softwares for numerical simulations.
Technical Paper

Mathematical Model to Evaluate and Optimize the Dynamic Performance of Pneumatic Brake System

2015-01-14
2015-26-0082
Pneumatic brake system is widely used in heavy truck, medium and heavy buses for its great superiority and braking performance over other brake systems. Pneumatic brake system consists of various valves such as Dual Brake Valve (DBV), Quick release Valve (QRV), Relay Valve (RV), Brake chambers. Dynamics of each valve is playing a crucial role in overall dynamic performance of the braking system. However, it is very difficult to find the contribution of each valve and pipe diameters in overall braking performance. Hence, it is very difficult to arrive a best combination for targeted braking performance as it is not possible to evaluate all combination on the actual vehicle. Hence, it is very important to have a mathematical model to optimize and evaluate the overall braking performance in early design phase. The present study is focusing on the mathematical model of a pneumatic brake circuit.
Technical Paper

Evaluation of Cabin Comfort in Air Conditioned Buses Using CFD

2014-04-01
2014-01-0699
The objective of the work presented in this paper is to provide an overall CFD evaluation and optimization study of cabin climate control of air-conditioned (AC) city buses. Providing passengers with a comfortable experience is one of the focal point of any bus manufacturer. However, detailed evaluation through testing alone is difficult and not possible during vehicle development. With increasing travel needs and continuous focus on improving passenger experience, CFD supplemented by testing plays an important role in assessing the cabin comfort. The focus of the study is to evaluate the effect of size, shape and number of free-flow and overhead vents on flow distribution inside the cabin. Numerical simulations were carried out using a commercially available CFD code, Fluent®. Realizable k - ε RANS turbulence model was used to model turbulence. Airflow results from numerical simulation were compared with the testing results to evaluate the reliability.
Technical Paper

Optimization of Air Intake System and Exhaust System for Better Performance of Turbocharged Gasoline Engine

2018-04-03
2018-01-1424
Gasoline engines with Multi point fuel injection (MPFI) technology are being developed with naturally aspirated and/or turbocharged engines. Wherein a MPFI and turbo charged combination engines have certain challenges during development stages. One of the important challenge is design of air intake and exhaust system. With MPFI turbocharged engine combination, the under bonnet heat management is crucial task for drivability. The heat management of air intake plays a vital role in drivability part therefore a design layout of air intake path is an important aspect. Drivability can be categorized as low end, mid-range and top end drivability. Turbocharged MPFI engines have a typical phenomenon of ‘Lag in response’ in the low-end region. This ‘Lag in response’ phenomenon at low-end drivability region can be overcome through optimization of air intake system and optimization of exhaust back pressure.
Journal Article

Vehicle Level Approach for Optimization of On-Board Diagnostic Strategies for Fault Management

2013-04-08
2013-01-0957
As the vehicle functions are getting distributed over multiple ECUs in order to realize various complex control functions, the need for sophisticated on-board diagnostic strategies are increasing in automotive domain, leading to a significant amount of hardware and software implementations for fault management inside various ECUs in the vehicle. This paper proposes optimized vehicle level approach for fault management strategies, wherein a centralized intelligent Gateway Module is proposed in the vehicle network architecture, which will be responsible for fault management of the complete vehicle in a chronological sequence. This Gateway Module will thereby have the possibility to group a cluster of faults raised by different ECUs and correlate them meaningfully to guide the operator towards root cause of the fault.
X