Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

Evaluation of Cabin Comfort in Air Conditioned Buses Using CFD

2014-04-01
2014-01-0699
The objective of the work presented in this paper is to provide an overall CFD evaluation and optimization study of cabin climate control of air-conditioned (AC) city buses. Providing passengers with a comfortable experience is one of the focal point of any bus manufacturer. However, detailed evaluation through testing alone is difficult and not possible during vehicle development. With increasing travel needs and continuous focus on improving passenger experience, CFD supplemented by testing plays an important role in assessing the cabin comfort. The focus of the study is to evaluate the effect of size, shape and number of free-flow and overhead vents on flow distribution inside the cabin. Numerical simulations were carried out using a commercially available CFD code, Fluent®. Realizable k - ε RANS turbulence model was used to model turbulence. Airflow results from numerical simulation were compared with the testing results to evaluate the reliability.
Technical Paper

Vibration Analysis on Driver Seat for Small Cars

2011-01-19
2011-26-0119
In India, small car segment is having maximum sale, which includes cars like Maruti 800, SUZUKI Swift, Maruti Alto, Tata Indica, etc. Driver seat is one of the main aspects to be considered while defining comfort in a moving vehicle. The current analysis concentrates on driver seat because driver comfort is of main concern since it is the most occupied seat in any vehicle and the occupancy is for longer duration. In addition to sitting, the driver's job is to manipulate different controls and concentrate parallely on many aspects. The research work aims at studying the vertical vibrations transferred to the human body via seat. The work is an attempt towards studying dynamic characteristics of driver seat for comfort through objective evaluation. For objective evaluation, two tests were conducted; Seat Effective Amplitude Transmissibility (SEAT) test and Ride Comfort Index test under two different conditions, i.e., car level and seat level testing on Car "A" and Car "B."
Technical Paper

Performance Driven Package Feasibility of Side Restraints Using KBE Tools

2013-01-09
2013-26-0027
Integrating safety features may lead to changes in vehicle interior component designs. Considering this complexity, design guidelines have to take care of aspects which may help in package feasibility studies that consider systems performance requirements. Occupant restraints systems for protection in side crashes generally comprise of Side Airbag (SAB) and Curtain Airbag (IC). These components have to be integrated considering design and styling aspects of interior trims, seat contours and body structure for performance efficient package definition. In side crashes, occupant injury risk increases due to hard contact with intruding structure. This risk could be minimized by cushioning the occupant contact through provision of SAB and Inflatable IC. This paper explains the methodology for deciding the package definitions using Knowlwdge Based Engineering (KBE) tools.
Technical Paper

FE Prediction of Thermal Performance and Stresses in a Disc Brake System

2006-10-31
2006-01-3558
The brake system is one of the most critical systems in the automotive vehicle. Its design is a challenging task since stringent performance and packaging requirements are to be fully met - optimizing the brake performance and weight of the brake system. The brake disc is an important component in the braking system which is expected to withstand and dissipate the heat generated during the braking event. Validation of brake disc design through CAE/FEA is presented in this paper. The procedure for prediction of thermal performance was developed in-house, tuned and verified by correlating with Test data available for existing-design and then applied to the new-design brake disc. The correlation achieved for the existing-design brake disc (both solid and ventilated), procedure for prediction of thermo-mechanical performance (heat transfer coefficient estimation, temperature distribution etc.) are also included.
Technical Paper

Interior Trims Design Considerations for Roof Mounted Curtain Airbag

2015-01-14
2015-26-0157
Curtain airbag design offers protection in side crash and it plays a critical role in safety of the vehicle. Curtain airbag provides protection to the occupant in many impact events like frontal offset, side barrier, and side pole and rollover condition. For a vehicle to be safe for any side impact condition, the curtain airbag should deploy and take its final shape before any injury happens to the occupant. During deployment, it is important that the airbag chooses a path of minimum resistance and does not get entangled in interior trims. In reality, the trims always do obstruct the path of airbag deployment in some way. Hence, special care has to be taken care for designing areas surrounding curtain like providing hinges, deflector components etc. to avoid being caught. There are about ten different factors on this deployment is dependent upon. This paper discusses these factors and the effect of the factors on the trims and airbag development.
Technical Paper

Common Automobile Program to Improve Mass Transportation

2016-04-05
2016-01-0154
This paper describes the Common Automobile Program (CAP) that can be implemented to improve mass transportation. CAP is the use of automated electric vehicles using smart navigation and control technologies to improve mass transportation. In CAP, common vehicles are used by different passengers, thus, reducing the on-road traffic and also the parking space required. Various low-cost stations are to be built along specified paths and the vehicle can be used at the convenience of the commuter. Currently, buses and trains require the passengers to wait at the station and a significant amount of time is spent at intermediate stops. The vehicle in CAP runs directly from origin to destination and also eliminates the waiting time at stations. Passengers do not wait for vehicles; instead vehicles wait for the passengers. The journey starts as the passenger enters the station and selects the destination.
Technical Paper

Sensitivity Analysis of Windshield Defrost Characteristics Impact on Occupant Thermal Comfort

2017-03-28
2017-01-0143
During cabin warm-up, effective air distribution by vehicle climate control systems plays a vital role. For adequate visibility to the driver, major portion of the air is required to be delivered through the defrost center ducts to clear the windshield. HVAC unit deliver hot air with help of cabin heater and PTC heater. When hot air interacts with cold windshield it causes thermal losses, and windshield act as sink. This process may causes in delay of cabin warming during consecutive cabin warming process. Thus it becomes essential to predict the effect of different windscreen defrost characteristics. In this paper, sensitivity analysis is carried for different windscreen defrosts characteristics like ambient conditions, modes of operation; change in material properties along with occupant thermal comfort is predicted. An integrated 1D/3D CFD approach is proposed to evaluate these conditions.
Technical Paper

Thermal Performance Prediction of Jet Lubricated Transmission System using Computational Methods

2017-10-08
2017-01-2437
The jet lubrication method is extensively used in the constant mesh high performance transmission system operating at range of speeds though it affects mechanical efficiency through spin power loss. The lubrication jet has a key role to maintain the meshing gears at non-fatal thermal equilibrium by effectively dissipating the heat generated to the surrounding. Heat transfer coefficient (HTC) is the indicator of the thermal behavior of the system, which provides great insight of efficient lubrication system that needs to be employed for prescribed type of transmission. In this study, a segment of the transmission unit which constitutes a gear pair is used for the simulation. Parametric study is carried out by considering the critical parameters affecting the thermal performance such as lubrication jet flow rate and rotational motions of the gears with speeds and temperatures.
Technical Paper

Design of Experiments Enabled CFD Approach for Optimizing Cooling Fan Performance

2014-04-01
2014-01-0658
Increasing demands on engine power to meet increased load carrying capacity and adherence to emission norms have necessitated the need to improve thermal management system of the vehicle. The efficiency of the vehicle cooling system strongly depends on the fan and fan-shroud design and, designing an optimum fan and fan-shroud has been a challenge for the designer. Computational Fluid Dynamics (CFD) techniques are being increasingly used to perform virtual tests to predict and optimize the performance of fan and fan-shroud assembly. However, these CFD based optimization are mostly based on a single performance parameter. In addition, the sequential choice of input parameters in such optimization exercise leads to a large number of CFD simulations that are required to optimize the performance over the complete range of design and operating envelope. As a result, the optimization is carried out over a limited range of design and operating envelope only.
Technical Paper

Development of a CAE Method for Predicting Solar Loading Impact for Electrical System Performance in an Automotive Cabin

2018-04-03
2018-01-0785
A number of market factors such as customer demand for improved connectivity and infotainment systems, automated driver assist systems and electrification of powertrain have driven an increase in the number of electrical systems within the cabin of automotive vehicles. These systems have limited operating temperature windows, therefore markets with high ambient temperatures and solar loading represent a significant challenge due to high cabin temperatures. Traditionally climatic facilities have been used replicate the conditions seen in these markets in order to understand the performance of the electrical systems. However such facilities have a number of limitations such as fixed solar arrays, secondary radiation from the walls and substantial operating costs limiting testing to envelope tests. Therefore the requirement for CAE based approach to more accurately represent the conditions seen in the real world is clear.
Technical Paper

Comparison of Different Methods for Panel Dent Resistance Using Numerical Assessment and Influence of Materials Used in Automotive Industry

2020-04-14
2020-01-0483
Conventionally, the automotive outer panels, giving vehicle its shape, have been manufactured from steel sheets. The outer panels are subjected to loads due to wind loading, palm-prints, person leaning on the vehicle, cart hits, and hail stones for example. Consumer awareness about these two panel characteristics: Oilcanning and Dent resistance is increased, which has been observed in recent marketing studies. Apart from perceptive quality, another factor depending on the dent performance is insurance and respective cost implications. Dents can occur due to several reasons such as object hits, parking misjudgement, hail stones etc. Phenomenon can be divided into two types, static and dynamic denting. Static dent case covers scenario wherein interaction with outer panel is mostly quasi-static. Hail stones present dynamic case where object hits a panel with certain kinetic energy. Automotive companies usually perform static dent assessment to cover all the cases.
Technical Paper

Headliner Trim Design Methodology Development with Finite Element Simulation and Optimization Considering Multi Domain Performance

2020-04-14
2020-01-1099
Passenger cars in the top segment have seen fast growth over the last few decades with an increasing focus on luxury, convenience, safety and the quality of driver experience. The headliner is a decorative and functional trim system covering the underside of the roof panel. It enhances the aesthetics and elegance of the car interiors. In premium vehicles, the headliner system has to suffice interior quietness and integrity apart from the performance and regulatory requirements. The Design Validation Plan requirements cover its contribution to the vehicle interior noise control, occupant safety, and perception of build quality. Contributions can be very significant and primarily be determined by design and material parameters. Also, headliner interactions with an adjacent body in white structure are crucial from performance point of view. Various foam options are available with different functions such as structural, acoustic, and energy-absorption.
Technical Paper

Cabin and Battery Cooling Performance Trade-off in an Electric Vehicle

2020-08-18
2020-28-0004
Electric vehicles (EVs) carries two main anxieties in users which are its range and battery life, hence these are important parameters to be taken care of during electric vehicle development. Range of EV depends on many parameters such as vehicle weight, heating ventilation and air conditioning (HVAC) system, battery cooling system (BCS), traction cooling system (TCS) and other electrical loads, which consumes power from a High Voltage (HV) battery. Severe hot ambient in India requires a big size HVAC system, on the other hand, the battery pack needs refrigerated cooling system to keep its temperature in control. Hence, the major parasitic consumers in an EV are HVAC and BCS. In order to enhance the overall efficiency, a trade-off between these two systems is crucial, as both the systems are served with common compressor and condenser in dual loop refrigerant circuit.
X