Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Applying Principles of Axiomatic Design to a Transdisciplinary Academic Program to Educate Skilled Workers for all Levels of the Automotive Industry

This paper describes the use of axiomatic design to create an academic program which targets the needs of the automotive industry-especially local industry. Creative and innovative engineers and technicians are needed to design, develop, and maintain the vehicles and transportation systems of the future. The design of a new program is presented using axiomatic design to establish multiple levels of customer needs, functional requirements (FRs), associated design parameters (DPs), and resulting design matrices (DMs) that clearly define the program. The curriculum for a two-year automotive technology program is enhanced by partnering with a four-year mechanical engineering program, local and national industries, and local secondary school programs. The paper also discusses potential complexities of the proposed program design and implementation and mitigation strategies.
Technical Paper

Experiences with a Space and Science Club in a Low-Income Community in South Texas

NASA's mission statement includes the protection of the home planet and a goal to inspire the next generation of explorers. NASA's current vision also includes human exploration of the Moon and Mars. Typically, residents of low-income communities are not directly involved in the space exploration process. Parents of children in low-income communities are inclined to be more interested in the educational components of NASA's activities rather than the technological accomplishments. This paper describes the approach taken to start and support a space and science club in a colonia near the U.S. - Mexico border in South Texas. The club provided a new organizational structure for linking NASA's goals with a low-income community. The structure of the club evolved over the course of three years to reflect the interests and resources of the youth that lived in the colonia.
Technical Paper

Next Generation of Scientists is Inspired at an Early Age

The concept that plants and humans in a living system are mutually beneficial was communicated to 2nd - 12th grade students in science educational and outreach programs at Texas Tech University's Center for Space Science. Students traveled to the TTU horticulture greenhouse for a live program, which focused on research in the Engineering Development Unit. The research is funded by NASA's Advanced Life Support. During the program students were presented with the science of growing plants, how plants benefit humans in space, and baseline science vocabulary. A survey instrument was developed to assess student level of understanding of sciences, and their comprehension of living cycles, which work together to support manned space missions. The survey consisted of multiple-choice questions covering topics presented during the program. Likert questions were used to assess student's desire to travel in space, be an astronaut or a scientist, and their enjoyment of science and growing plants.
Technical Paper

Musculoskeletal Loading During Gravitational Transitions Improvements in Postural Control

Long-duration space travel will require improvements in exercise countermeasures so that astronauts are able to maintain cardiovascular fitness, bone mass and the ability to perform coordinated movements in a terrestrial environment following extended periods of “near weightlessness” encountered during transit to and/or obit of the Moon, Mars, and Earth. In such gravitational transitions feedback and feedforward postural control strategies must be recalibrated to ensure optimal locomotion performance. Current data suggests that specific, short duration musculoskeletal loading, following running in simulated Martian gravity using a vertical suspension type simulator, reduces the time required for re-adapting to steady-state performance of the postural control system during a novel, treadmill based precision stepping task. Possible enhancements to the current exercise countermeasures program are suggested.
Technical Paper

Education Outreach Associated with Technology Transfer in a Colonia of South Texas: Green Valley Farms Science and Space Club for Middle School Aged Children in Green Valley Farms, San Benito, Texas

Texas colonias are unincorporated subdivisions characterized by inadequate water and wastewater infrastructure, inadequate drainage and road infrastructure, substandard housing, and poverty. Since 1989 the Texas Legislature has implemented policies to halt further development of colonias and to address water and wastewater infrastructure needs in existing and new colonias along the border with Mexico. Government programs and non-government and private organization projects aim to address these infrastructure needs. Texas Tech University's Water Resources Center demonstrated the use of alternative on-site wastewater treatment in the Green Valley Farms colonia, San Benito, Texas. The work in Green Valley Farms was a component of a NASA-funded project entitled “Evaluation of NASA's Advanced Life Support Integrated Water Recovery System for Non-Optimal Conditions and Terrestrial Applications.” Two households within the colonia were demonstration sites for the constructed wetlands.
Technical Paper

Incorporation of a Membrane-Aerated Bioreactor in a Water Recovery System

The objective of this study was to investigate the potential of membrane-aerated bioreactors as long term microgravity compatible nitrifying biological water processors (BWP). A small-scale (1/20th) replica of the water recovery system (WRS) at JSC has been operated and extensively analyzed at Texas Tech University (TTU) for the last 3 years. The current nitrifying tubular reactor at JSC and TTU has experienced difficulty in maintaining efficiency and low maintenance. In an attempt to increase the efficiency of the biological portion of the WRS, a membrane-aerated bioreactor (MABR) was constructed and operated using the same parameters as the TTU-WRS in August 2003. The MABR is downstream of an anaerobic packed bed and is designed to promote nitrification (NH4 → NOx). The MABR achieved a percent nitrification of 61% and 55% for recycle ratios of 10 and 20, respectively.