Refine Your Search

Topic

Search Results

Technical Paper

Process Development for Use of AERAC

1991-11-01
912650
Two Automated Electromagnetic Riveting Assembly Cells (AERAC) were manufactured for Textron Aerostructures by Electroimpact, Inc. The AERAC installs the final rivets in the A330/A340 upper wing panel in the floor assembly jig. At Textron for each wing the corresponding floor assembly jigs for each wing are lined up end to end. An operating procedure in which the formboards are removed in bays allows efficient operation of an in the jig riveter such as the AERAC. Specialized machine codes developed for the AERAC allows quick fully programmed stringer to stringer jumps of the stringer side offset tooling. The AERAC is programmed entirely from a CATIA drawing of the part. Of the 5 axes of rivet data available only two are retained for use by the AERAC.
Technical Paper

Temperature Control Analysis for the U.S. Lab, Node 1, and Elements Attached to Node 1

1997-07-14
972564
The International Space Station (ISS) Temperature and Humidity Control (THC) system has been designed with the intent of supplying the air cooling needs of various elements from the U.S. Lab heat exchanger assembly. Elements without independent air cooling capability are known as “parasitic” elements; these are Node 1, the Cupola, and the Mini Pressurized Logistics Module (MPLM). Analysis results are presented which show expected temperatures in the MPLM, and Node 1, as various heat loads are present in the respective elements. Analyses within this paper are coordinated with the results obtained from the Development Test of the complex USL/Node 1 integrated ducting system. This test was conducted in the summer of 1995, at the McDonnell Douglas test facility in Huntington Beach, California.
Technical Paper

Space Station THC/IMV Development Test/Analysis Correlations and Flight Predictions

1997-07-14
972565
The International Space Station (ISS) Temperature and Humidity Control/Intermodule Ventilation (THC/IMV) system for the U.S. Lab provides required cooling air for the U.S. Lab and also provides “parasitic” cooling air for Node 1 and its attached elements. This scheme provides cooled air from the Lab THC directly to Node 1 and also to elements attached to Node 1, at different stages of Space Station assembly. A development test of the U.S. Lab and Node 1/attached elements' integrated THC/IMV ducting system was performed in the summer of 1995. This test included the U.S. Lab's development level Common Cabin Air Assembly (CCAA), which removes sensible and latent heat from the circulated and ducted cabin air. A referenced 1996 ICES Paper contains the initial correlation results. An analytical model has been developed, which has been used to predict flow and pressure drop performance of the system for several potential and actual changes from the Development Test configuration.
Technical Paper

Assembly Fixture for 787 Section 11, Heavy Composite Assembly

2007-09-17
2007-01-3869
The 787 Section 11 Assembly Cell is a combination fixed post and moving frame holding and indexing system, designed to determinately build the 787 Section 11 Wing box. The retractable overhead frame allows maximum clearance for safer and faster loading and unloading of component parts, as well as completed wingbody sections. Additionally, each index is also retractable allowing maximum fastener access inside the jig.
Technical Paper

Automated Riveting Cell for A320 Wing Panels with Improved Throughput and Reliability (SA2)

2007-09-17
2007-01-3915
A new Low-Voltage Electromagnetic Riveting (LVER) machine has entered service at the Airbus UK wing factory in Broughton, Wales, in an assembly workcell for A320 family wing panels. The machine is based on existing Electroimpact technology but incorporates numerous design modifications to process tools, fastener feed hardware, machine structure and the control system. In the first months of production these modifications have demonstrated clear improvements in fastener installation cycle times and machine reliability.
Technical Paper

Robotic Drilling System for 737 Aileron

2007-09-17
2007-01-3821
Boeing's wholly owned subsidiary in Australia, Hawker de Havilland produces all ailerons for the Boeing 737 family of aircraft. Increasing production rates required to meet market demand drove the requirements for a new updated approach to assembly of these parts. Using lean principals, a pulsed flow line approach was developed. A component of this new line is the integration of a flexible robotic drilling/trimming system. The new robotic system is required to meet aggressive tack time targets with high levels of reliability. The selected system was built on a Kuka KR360-2 conventional articulated arm robot. A significant challenge of this project was the requirement for the process head to work efficiently on an aileron in an existing jig. As a result a new side-mounted drill and trim end effector was developed. Automated tool changers for both cutters and pressure foot assemblies eliminated the requirement for in- process manual intervention.
Technical Paper

High-Speed Fiber Placement on Large Complex Structures

2007-09-17
2007-01-3843
Automated Fiber Placement (AFP) equipment has been developed capable of laying fiber in excess of 2000 inches per minute on full-size, complex parts. Two such high-speed machines will be installed for production of a nose section for a large twin-aisle commercial aircraft fuselage at Spirit AeroSystems in Wichita, Kansas along with a rotator for the fuselage mandrel. The problem of cutting and adding on the fly at these speeds requires thorough re-evaluation of all aspects of the technology, including the mechanical, controls, servos systems, and programming systems. Factors to be considered for high speed cut and add on the fly are discussed.
Technical Paper

Gaugeless Tooling

1998-09-15
982147
At The Boeing Company, the advent of a Determinant Assembly (DA) program and the subsequent production of accurate fuselage subpanels created a need to be able to position subpanels accurately and repeatably during fuselage assembly. The tool engineering organization of The Boeing Company and Advanced Integration Technology, Inc. (AIT) as the prime contractor, are developing and installing automated positioning and alignment systems throughout major 747 fuselage assembly areas which enable DA techniques. The benefits of this assembly approach and this automated precision tooling are flexibility, assembly accuracy, ease of assembly and associated speed, reduced downtime for tool maintenance, and improved shop-floor ergonomics.
Technical Paper

Wing Assembly System for British Aerospace Airbus for the A320

1998-09-15
982151
British Aerospace needed an automated wing riveting system for fastening the A320 wing sections. The E4000 Wing Riveting System was designed and installed at their Airbus factory in Chester, UK and is now in production. It uses a five axis solid yoke with workheads on each end of the yoke. It accurately installs both rivets and lockbolts over the entire wing panel, including offset areas.
Technical Paper

Machine Readable Coding of 777 Wing Fastening Systems Tooling

1998-09-15
982133
This paper presents a detailed overview of the advantages and benefits of using 2-D barcodes, called Data Matrix codes, on Wing Fastening System (WFS) Tooling. This project was conducted on, but not limited to, the 777 Wing Fastening System (GEMCOR) tooling including the drills, fingers, and button dies. This paper will show how using Data Matrix codes to identify tooling will: Eliminate excessive downtime due to the operator using the incorrect tooling for a given tool setup. Reduce the cost associated with panel rework due to the use of incorrect tooling. Reduce the cost associated with excessive tool inventory or last minute ordering to keep up with production needs. Track tool life information for each specific tool. Provide operators with an easy to use tool setup reference document. And provide the factory with the ability to trace panel damage or defects back to the specific machine and exact tooling used.
Technical Paper

EVA Operations Using the Spacelab Logistics Pallet for Hardware Deliveries

2001-07-09
2001-01-2201
There are a large number of space structures, orbital replacement units (ORUs) and other components that must be transported to orbit on a regular basis for the assembly and maintenance of the International Space Station (ISS). Some of this hardware will be ferried on the Spacelab Logistics Pallet (SLP), which has a long and reliable history of space flight successes. The carrier is well used, well qualified, and very adaptable for repeated use in accommodating cargoes of various sizes and shapes. This paper presents an overview of past, present and future hardware design solutions that accommodate EVA operations on the SLP. It further demonstrates how analysis techniques and design considerations have influenced the hardware development, EVA operations, and compliance with human engineering requirements for the SLP.
Technical Paper

An Investigation into the Use of Small, Flexible, Machine Tools to Support the Lean Manufacturing Environment

2001-09-10
2001-01-2566
Drilling fastener holes in large assemblies is traditionally accomplished through the use of large machine tools in order to obtain the accuracies required for the assembled part. Given recent advances of machine design and machine controller compensation, the accuracy of the motion platform can be corrected if the machine is repeatable. This coupled with the use of a vision system or touch probe to compensate for assembly variations, permit the use of smaller, more portable drilling systems. These smaller, more portable machine tools allow for lean manufacturing techniques to be incorporated into build processes, utilize less floor space, and in many cases are less costly than larger, permanent machine tools. This paper examines the feasibility of utilizing a small 5-axis, portable, drilling system for drilling the side panel skins on the F/A-18 E/F forward fuselage.
Technical Paper

Method of Accurate Countersinking and Rivet Shaving

2001-09-10
2001-01-2569
Wing skin riveting and bolting requires the surface to be flush to +/–.025mm(.001″) to produce an acceptable finish. Using the method described in this paper, automated wing riveting technology and panel assembly techniques can achieve better shave height and countersink accuracies than have previously been possible in production.
Technical Paper

Drill and Drive End Effector

2001-09-10
2001-01-2576
Electroimpact developed an end effector for Airbus UK, Ltd. for use on a Kuka KR350 robot provided by Airbus UK. The end effector is referred to as the DDEE (Drill and Drive End Effector), and incorporates four main functions. The end effector pushes up on a wing panel with programmable pressure, drills a hole with a servo-servo drill, inspects the hole with a servo ball-type hole gauge and then drives a pin-tail style lockbolt into the hole. The end effector is being used as part of a development and feasibility study for incorporating automation into the wing panel manufacture process.
Technical Paper

F/A-18 E/F Outer Wing Lean Production System

2001-09-10
2001-01-2608
The Boeing F/A-18 E/F Program Wing Team, Lean Organization and Phantom Works have partnered to develop a “state of the art” lean production system for the Outer Wing that represents an evolutionary change in aircraft design and assembly methodology. This project is focused on improving quality, cycle and cost performance through the implementation of lean principles, technology integration and process improvements. This paper will discuss the approach taken to reach the end state objectives and the technologies and processes being developed to support it. Items to be discussed include lean principles and practices, new tooling concepts, improved part assembly techniques, advanced drilling systems, process flow enhancements and part handling/part delivery systems.
Technical Paper

Machined Component Quality Improvements Through Manufacturing Process Simulation

2001-09-10
2001-01-2607
New manufacturing technologies such as high speed machining (HSM) are being developed to produce high quality aerospace components. While our developing understanding of machining dynamics is enabling precise control of cutting tools to provide for high dimensional accuracy, residual stresses present in aluminum mill products can compromise the ability to machine dimensionally accurate components from these stock materials. The advantages of precise tool control can be lost if the metal being cut moves during machining. And, even a perfectly machined part that distorts when it is released from the machine bed will cause problems upon assembly. Thus, ensuring the quality of the mill product becomes an enabling technology for advanced manufacturing approaches such as HSM.
Technical Paper

A Preliminary Dynamic Model of Brake Friction Using Pressure and Temperature

2001-10-28
2001-01-3150
Understanding the friction behavior of brake lining materials is fundamental to the ability to predict brake system performance. Of particular interest to the aviation community, where carbon/carbon composite heatsinks are commonly used, is the aircraft response at deceleration onset. There are two performance measures defining brake system performance at braking onset: deceleration onset rate and system response time. The latter is strictly a function of the brake system hydraulics and is not affected by brake lining friction. The former performance measure is a function of both system hydraulics and brake lining friction. Previously to the work herein, carbon heatsink friction was thought to be unpredictable at braking onset. That being the case, a predictive capability for deceleration onset rate was not previously undertaken. This meant that assessment of this performance measure waited until aircraft taxi tests were performed.
Technical Paper

Lightweight HH503 Handheld Riveter

2002-10-01
2002-01-2631
The handheld (HH) electromagnetic riveter (EMR) has been proven to be an effective means of installing rivets up to 3/8″ diameter. However, early versions were heavy and cumbersome to use. A new generation of handheld riveting systems has been developed with substantially reduced weight and improved ergonomics by incorporating a spring-damper recoil reduction system. Additional improvements include a simpler and more robust control system and a 0-1000V voltage range to improve efficiency.
Technical Paper

Process Automation Through-Reality Graphics, Kitting, and Automated Panel Protection

1997-09-30
972806
This paper addresses process improvements through reality graphics (RG) aided by automated panel protection (APP) and tool kitting pertaining to automated wing riveting and fastening. This system provides an integrated display of numerical controlled media, automatic tool identification, and image files, combined with automated panel protection. Reality graphics (image files) within the NC program allow the machine operator to access portions of the NC program while attaching a support graphic. This would include safety hazards, unique panel differences, program start, and tool change information. Automated panel protection (APP) analyze process key characteristics, and perishable tool kits, and it monitors the installation of fasteners using multiple cameras mounted in strategic positions, taking real-time images. The APP detects incorrect tooling and possible panel damage, with little or no impact to the operational cycle time of the automated fastening equipment.
Technical Paper

Simply Supported Retractable Top Beam for Wing Major Assembly Jig

2006-09-12
2006-01-3127
A large free-standing structure is constructed to positively position the spar and related components in the major assembly jig of the wing for a military transport aircraft. The beam of this structure is mounted on mechanisms enabling the lateral retraction of the beam and tooling to provide full part loading access and extraction of a completed wing. The free-standing nature of this design also allows full integration of an automated drilling machine into the jig.
X