Refine Your Search


Search Results

Technical Paper

Comparison of Alerted and Visually Acquired Airborne Aircraft in a Complex Air Traffic Environment

This study was designed to answer what percent of “required” traffic pilots acquire visually using the current “visual acquisition system” of windows, eyes and the Traffic Collision Avoidance System (TCAS). “Required Traffic” was defined as Air Traffic Control (ATC) calls to the research aircraft, TCAS Traffic Alerts and/or TCAS Resolution Advisories. The results of the approximately 40 hours of flight were that the majority of (“required”) traffic was NOT visually acquired (39% visually acquired; 61% not visually acquired). When traffic was identified to the pilots by more than one source, the visual acquisition rate was 58%. For validation purposes, an additional 10 hours of flight observations were made during revenue flights with a major airline. Flight test and airline observations were found to be comparable.
Technical Paper


A review is made of previously reported status of the augmentor wing concept, including test work of de Havilland Aircraft of Canada and the NASA Ames Research Center. More recent NASA data which formed the basis for proceeding with a flight research vehicle program on the Buffalo CV-7A are discussed. This background is used to show potential application to a turbofan-powered production airplane concept whose highly integrated propulsion and aerodynamics show promise for a very quiet STOL. Proposed future augmentor wing development programs are also briefly discussed.
Technical Paper

Mission-Adaptive Wing Flight Demonstration Program

The AFTI/F-111 program is a full-scale-development flight test and evaluation of the mission-adaptive wing concept. This concept features variable-camber leading and trailing edge flaps that are automatically positioned to alter the wing airfoil geometry and provide best performance throughout the flight envelope. The flaps use flexible skins that are curved and positioned by internal mechanisms so that smooth airfoil contours are maintained for peak aerodynamic efficiency.
Technical Paper

Laser Tracker Assisted Aircraft Machining and Assembly

The patented (US 7,277,811 B1) Position Bar provides precise measurement, machining and drilling data for large Engineering and Tooling structure. The Position Bar also supports end item verification seamlessly in the same machining control code. Position Bar measurements are fast, accurate, and repeatable. The true centerline of the machine tool's spindle bearings are being measured to within .002 in a 20 foot cubic volume (20×20×20). True “I”, “J”, & “K” machine tool spindle positions are also precisely measured. Any Gantry or Post Mill Tool can be converted to a Coordinate Measurement Machine (CMM) with this laser tracker controlled Position Bar. Determinant Assembly (D.A.) holes, for fuselage and wing structures are drilled and then measured to within .006 in X, Y, & Z, over a 40 foot distance. Average laser tracker measurement time, per hole, is 2 seconds.
Technical Paper

Calculations of Ice Shapes on Oscillating Airfoils

The desire to operate rotorcraft in icing conditions has renewed the interest in developing high-fidelity analysis methods to predict ice accumulation and the ensuing rotor performance degradation. A subset of providing solutions for rotorcraft icing problems is predicting two-dimensional ice accumulation on rotor airfoils. While much has been done to predict ice for fixed-wing airfoil sections, the rotorcraft problem has two additional challenges: first, rotor airfoils tend to experience flows in higher Mach number regimes, often creating glaze ice which is harder to predict; second, rotor airfoils oscillate in pitch to produce balance across the rotor disk. A methodology and validation test cases are presented to solve the rotor airfoil problem as an important step to solving the larger rotorcraft icing problem. The process couples Navier-Stokes CFD analysis with the ice accretion analysis code, LEWICE3D.
Technical Paper

777X Control Surface Assembly Using Advanced Robotic Automation

Fabrication and assembly of the majority of control surfaces for Boeing’s 777X airplane is completed at the Boeing Defense, Space and Security (BDS) site in St. Louis, Missouri. The former 777 airplane has been revamped to compete with affordability goals and contentious markets requiring cost-effective production technologies with high maturity and reliability. With tens of thousands of fasteners per shipset, the tasks of drilling, countersinking, hole inspection, and temporary fastener installation are automated. Additionally and wherever possible, blueprint fasteners are automatically installed. Initial production is supported by four (4) Electroimpact robotic systems embedded into a pulse-line production system requiring strategic processing and safeguarding solutions to manage several key layout, build and product flow constraints.
Technical Paper

Dual Electric Spindle Retrofit for Wing Riveters

The Boeing Company (Renton Division) had a requirement for a 30,000 RPM spindle to provide improved surface finish when milling 2034 ice box rivets in hydraulic wing riveters. Electroimpact supplied an electrical spindle which fit into the same cylinder block as the hydraulic spindle. This was reported in SAE Paper #2000-01-3017. Boeing Renton has also now put Electroimpact 20,000 RPM electric drilling spindles into five wing riveting machines so now both spindles in the machine are Electroimpact electric spindles. The electric drill spindle features an HSK 40C holder. Both spindles are powered by the same spindle drive which is alternately connected to the drill and then the shave spindle.
Technical Paper

Flexible Assembly System Implementation

This paper covers issues related to the installation, testing, and production implementation of a large-scale automated wing drilling/fastener installation system. Emphasis is placed on describing the production process, foundation requirements, axes alignment, calibration, testing and implementation. Description will include key hardware features such as the multi-function end effector and spindle end effector. The objective is to convey the complexity of implementing this system as well as reviewing the lessons learned from this experience.
Technical Paper

The Automated NC Mini-Driller

The introduction of a new derivative to an existing aircraft model poses many decisions regarding old versus new. In the case of the introduction of the extended range 767 (the 767-400ER), an entirely new wing design prompted the examination of the then current assembly processes and tooling. The hesitation to build new drill templates for use in the traditional method of second stage wing spar assembly inspired Tool Engineering Management to request the investigation of a low cost automated drilling apparatus. As a result, the Boeing Automated Tools Group and Advanced Integration Technology, Inc. (AIT) developed and implemented mobile numerically controlled mini-drilling machines for post-ASAT I assembly-drilling operations.
Technical Paper

Designing Airplane Cabin Noise Treatment Packages using Statistical Energy Analysis

Statistical Energy Analysis (SEA) is a very powerful tool in its ability to guide noise control package design in automobile, airplane and architectural systems. However transmission loss modeling in an SEA frame work has more to do with modeling of sound propagation through foam and fiber noise control materials than classical SEA power flow between groups of resonant modes. The transmission loss problem is reviewed in an SEA frame work with a focus on key paths and input parameter variations on predicted noise control package performance.
Technical Paper

CFD Modeling of 2-D Aileron Effectiveness

This paper examines the capability of the Reynolds-averaged thin-layer Navier-Stokes codes to simulate the results from a two-dimensional aileron effectiveness test. This unique test was carried out in the IAR high Reynolds number wind tunnel and addressed the effects of Reynolds number, Mach number and angle-of-attack on aileron effectiveness. The test results showed a highly nonlinear variation of lift for downward trailing edge deflections. It provides a valuable database for using CFD to determine the adequacy of the corrections applied to the experimental data due to the presence of the wind tunnel walls, and for assessing the current CFD capability to model the flowfield with separation. CFD predictions are obtained by using CFL3D with the Spalart-Allmaras turbulence model and TLNS2D with the modified Johnson-King turbulence model.
Technical Paper

Robust Analysis of Active Flutter Suppression Using Multiple Control Surfaces via Second-Order Controllers

The robust stability of an active flexible wing section with leading- and trailing-edge control surfaces is further investigated via the μ-method. Motivated by a more detailed servo control dynamics, the two controllers K1 and K2, which command the deflections of the trailing-edge flap and the leading-edge flap respectively, are modeled as two second-order shock absorbers in this study. The nominal and robust stability margins, modal properties, critical flutter airspeeds and frequencies are computed to predict the flutter of a nonlinear aeroelastic system and to investigate the aeroservoelastic stability in the μ-framework. The simulation results are compared with the previous study of which the controllers were modeled as the simplified (first-order) shock absorbers. The improved sensitivity to detect the control-structure coupling is observed by applying the second-order shock absorbers in the ASE model.
Technical Paper

Universal Splice Machine

There is an increasing demand in the aerospace industry for automated machinery that is portable, flexible and light. This paper will focus on a joint project between BROETJE-Automation and Boeing called the Universal Splice Machine (USM). The USM is a portable, flexible and lightweight automated drilling and fastening machine for longitudinal splices. The USM is the first machine of its kind that has the ability not only to drill holes without the need to deburr, (burrless drilling) but also to insert fasteners. The Multi Function End Effector (MFEE) runs on a rail system that is mounted directly on the fuselage using a vacuum cup system. Clamp up is achieved through the use of an advanced electromagnet. A control cart follows along next to the fuselage and includes an Automated Fastener Feeding System. This paper will show how this new advancement has the capabilities to fill gaps in aircraft production that automation has never reached before.
Technical Paper

The 747-400 Dreamlifter - Overview & Mission

The development of new commercial airliners is a very risky proposition. To get it right, airframe manufacturers must balance new technologies and manufacturing methods with global participation and business considerations. The 787 is Boeing's popular new wide body aircraft incorporating state of the art composites design and manufacturing methods. But new technology alone is not enough. A new logistics system was needed to integrate global partners in order to fully benefit from new technologies. The Boeing 747-400 Dreamlifter is a special purpose 747-400 modified to transport Boeing 787 airplane components through various stages of manufacturing.
Technical Paper

Use of Electromagnetic and Vacuum Forces on Aircraft Assembly

Decades ago our innovative grandfathers developed the first automated riveting machines based on hard automation using kinematics and tools attached to a C-frame. The C-frame serves multiple functions: First, it holds the upper and lower tools in fixed positions relative to each other; second, it translates upper active tooling forces to the lower tool; and third, it embraces the part placed between the upper and lower tool. C-frames and newly developed yoke, ring and gantry machines, used for low level (first, second) fuselage and wing assembly are growing in size to exorbitant proportions to satisfy requirements of larger and larger structures. High costs are dictated by massive kinematics and complex controls that provide stability, precision, and process speed. All this is mainly needed because we have to carry mechanical forces around the part, from upper to lower tool along the C-frame, gantry, yoke, bridge, etc.
Technical Paper

Radial and Tangential Forces, Tool Motion, and the Formation of Lobed Holes in Drilling

Out-of-round holes are formed as a result of tool motion during drilling. Tool vibration is driven by radial and tangential forces on the primary and secondary cutting edges. These forces in turn depend on the chip loads on each cutting edge, which in turn depend on the position of the tool at the current time and at the time of the previous tooth passage. A preliminary analysis based on balancing the cutting forces and the bending forces on the tool, shows that the characteristic frequencies of motion of the tool in the tool frame are near 3/rev, 5/rev, 7/rev etc. (corresponding to 2/rev, 4/rev, 6/rev) in the workpiece frame. These motions are consistent with the tool motion and hole form errors commonly observed on the shop floor. We will describe procedures for measuring the dependence of cutting forces on chip load, the development of simple equations for lateral motion of the tool, and solutions for the tool's behavior.
Technical Paper

Advanced Technology in Future Metal Cutting for Airframe Manufacturing

Metal cutting is a substantial constituent of airframe manufacturing. During the past several decades, it has evolved significantly. However, most of the changes and improvement were initiated by the machine tool industry and cutting tool industry, thus these new technologies is generally applicable to all industries. Among them, few are developed especially for the airframe manufacture. Therefore, the potential of high efficiency could not be fully explored. In order to deal with severe competition, the aerospace industry needs improvement with a focus on achieving low cost through high efficiency. The direction of research and development in parts machining must comply with lean manufacturing principles and must enhance competitiveness. This article is being forwarded to discuss the trend of new developments in the metal cutting of airframe parts. Primary driving forces of this movement, such as managers, scientists, and engineers, have provided significant influence to this trend.
Technical Paper

Assessment of the OVERFLOW Navier Stokes Code for Various Airplane Components

The OVERFLOW chimera grid Navier Stokes code was used to analyze a wide variety of airplane configurations. The code performed reliably and was found to have comparable accuracy to the structured grid code TLNS3D. It is easier to develop overlapping grid blocks to represent a complex configuration than it is to develop grid blocks that must abut one another. The process is inherently modular. One can add or subtract components like tip-lights, compound winglets, struts, nacelles, tails and fairings at will. The gain in grid simplicity is offset by the complication in specifying block connectivity, however. The overset blocks are typically of better quality, but there is a drawback in that it is not always possible to guarantee flux conservation. The recent development of software for automatic connectivity holds promise for the routine use of OVERFLOW by design engineers.
Technical Paper

Development of Non-Metallic Fastener Designs for Advanced Technology Structural Applications

Fastening metallic structure for aerospace applications is relatively straightforward and has been done for some time. Dealing with advanced composites, though, requires a significantly different technological approach, especially primary structure. Although composite material utilization has increased enormously in civil and military aircraft in recent years, the application of composite materials to primary aircraft structure has not kept pace and is still greeted with some skepticism in the aerospace community. In particular, no major transport manufacturer has yet employed composite components for fuselage or wing primary structure. This appears to be changing rather rapidly with the introduction and the evolution of new airframes such as the 7E7 and Blended Wing Body (BWB) concepts.
Technical Paper

A Robust Method of Countersink Inspection Using Machine Vision

An automated system drills the outer moldline holes on a military aircraft wing. Currently, the operator manually checks countersink diameter every ten holes as a process quality check. The manual method of countersink inspection (using a countersink gauge with a dial readout) is prone to errors both in measurement and transcription, and is time consuming since the operator must stop the automated equipment before measuring the hole. Machine vision provides a fast, non-contact method for measuring countersink diameter, however, data from machine vision systems is frequently corrupted by non-gaussian noise which causes traditional model fitting methods, such as least squares, to fail miserably. We present a solution for circle measurement using a statistically robust fitting technique that does an exceptional job of identifying the countersink even in the presence of large amounts of structured and non-structured noise such as tear-out, scratches, surface defects, salt-and-pepper, etc.