Refine Your Search

Topic

Search Results

Journal Article

Disturbance of Electronics in Low-Earth Orbits by High Energy Electron Plasmas

2009-07-12
2009-01-2339
Electrical disturbances caused by charging of cables in spacecraft can impair electrical systems for long periods of time. The charging originates primarily from electrons trapped in the radiation belts of the earth. The model Space Electrons Electromagnetic Effects (SEEE) is applied in computing the transient charge and electric fields in cables on spacecraft at low to middle earth altitudes. The analysis indicated that fields exceeding dielectric breakdown strengths of common dielectric materials are possible in intense magnetic storms for systems with inadequate shielding. SEEE also computes the minimal shielding needed to keep the electric fields below that for dielectric breakdown.
Journal Article

Analysis of Convective Heat Transfer in the Orbiter Middeck for the Shuttle Rescue Mission

2009-07-12
2009-01-2550
The paper presents the results of a CFD study for predictions of ventilation characteristics and convective heat transfer within the Shuttle Orbiter middeck cabin in the presence of seven suited crewmember simulation and Individual Cooling Units (ICU). For two ICU arrangements considered, the thermal environmental conditions directly affecting the ICU performance have been defined for landing operation. These data would allow for validation of the ICU arrangement optimization.
Journal Article

A Fresh Look at Radiation Exposures from Major Solar Proton Events

2008-06-29
2008-01-2164
Solar proton events (SPEs) represent the single-most significant source of acute radiation exposure during space missions. Historically, an exponential in rigidity (particle momentum) fit has been used to express the SPE energy spectrum using GOES data up to 100 MeV. More recently, researchers have found that a Weibull fit better represents the energy spectrum up to 1000 MeV (1 GeV). In addition, the availability of SPE data extending up to several GeV has been incorporated in analyses to obtain a more complete and accurate energy spectrum representation. In this paper we discuss the major SPEs that have occurred over the past five solar cycles (~50+ years) in detail - in particular, Aug 1972 and Sept & Oct 1989 SPEs. Using a high-energy particle transport/dose code, radiation exposure estimates are presented for various thicknesses of aluminum. The effects on humans and spacecraft systems are also discussed in detail.
Technical Paper

A Comparison of the Radiation Environments in Deep Space

2007-07-09
2007-01-3114
Both humans and onboard radiosensitive systems (electronics, materials, payloads and experiments) are exposed to the deleterious effects of the harsh space radiations found in the space environment. The purpose of this paper is to present the space radiation environment extended to deep space based on environment models for the moon, Mars, Jupiter, and Saturn and compare these radiation environments with the earth's radiation environment, which is used as a comparative baseline. The space radiation environment consists of high-energy protons and electrons that are magnetically “trapped” in planetary bodies that have an intrinsic magnetic field; this is the case for earth, Jupiter, and Saturn (the moon and Mars do not have a magnetic field). For the earth this region is called the “Van Allen belts,” and models of both the trapped protons (AP-8 model) and electrons (AE-8 model) have been developed.
Technical Paper

Improvement of Risk Assessment from Space Radiation Exposure for Future Space Exploration Missions

2007-07-09
2007-01-3116
Protecting astronauts from space radiation exposure is an important challenge for mission design and operations for future exploration-class and long-duration missions. Crew members are exposed to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR). If sufficient protection is not provided the radiation risk to crew members from SPEs could be significant. To improve exposure risk estimates and radiation protection from SPEs, detailed evaluations of radiation shielding properties are required. A model using a modern CAD tool ProE™, which is the leading engineering design platform at NASA, has been developed for this purpose. For the calculation of radiation exposure at a specific site, the cosine distribution was implemented to replicate the omnidirectional characteristic of the 4π particle flux on a surface.
Technical Paper

Structural Pressures Developed During Fill of Complex Systems

1998-07-13
981735
Excessive impact pressures can develop when an evacuated system is filled with liquid. Such a process is usually highly chaotic, especially when the system geometry is complex. Available computational methods by themselves cannot provide the necessary answers. The International Space Station (ISS) heat exchanger has a complex flow system, and a synthesis of computational and experimental methods was necessary to design the system. The FLOW-NET two-phase flow program was used to determine the range of loss coefficients and the liquid-vapor interface mass and energy transfer that would fit the measured impact pressures. These loss coefficients could then be used to compute the impact pressures for a design configuration similar to the one tested at a range of operating conditions.
Technical Paper

International Space Station Temperature and Humidity Control Subassembly Hardware, Control and Performance Description

1998-07-13
981618
The temperature and humidity of the air within the habitable areas of the International Space Station are controlled by a set of hardware and software collectively referred to as the Temperature and Humidity Control (THC) subassembly. This subassembly 1) controls the temperature of the cabin air based on a crew selected temperature, 2) maintains humidity within defined limits, and 3) generates a ventilation air flow which circulates through the cabin. This paper provides descriptions of the components of the THC subassembly, their performance ranges, and the control approach of the hardware. In addition, the solutions of the design challenges of maintaining a maximum case radiated noise level of NC 45, controlling the cabin air temperature to within ±2°F of a setpoint temperature, and providing a means of controlling microbial growth on the heat exchanger surfaces are described.
Technical Paper

Dynamic Circuit Analysis and Testing for International Space Station Science Experiments

2008-11-11
2008-01-2911
The International Space Station (ISS) Payload Engineering Integration (PEI) organization has developed the critical capabilities in dynamic circuit modeling and simulation to analyze electrical system anomalies during testing and operation. This presentation provides an example of the processes, tools and analytical techniques applied to the improvement of science experiments over-voltage clamp circuit design which is widely used by ISS science experiments. The voltage clamp circuit of Science Rack exhibits parasitic oscillations when a voltage spike couples to the Field-Effect Transistor (FET) in the clamp circuit. The oscillation can cause partial or full conduction of the shunt FET in the circuit and may result in the destruction of the FET. In addition, the voltage clamp circuit is not designed to detect the high current through the FET, and this condition can result in damage to surrounding devices. These abnormal operations were analyzed by dynamic circuit simulation and tests.
Technical Paper

Multi-Fuel Reforming and Fuel Cell Systems for Aviation Applications: The Role of Bio-Diesel and its Synergy with Global Interests

2008-11-11
2008-01-2855
The rising cost of fuel prices, in part due to the perception of diminishing supplies of common fuelstocks, as well as worldwide attention to reducing emissions has pushed the need to explore the use of many alternative fuels. The aviation industry has been under recent scrutiny due to its contribution of greenhouse gas emissions (GHG). Current contribution of GHG by airplanes is relatively small, 2% of the total GHG emissions, but world air traffic is anticipated to continue to grow and may have a corresponding increase in emissions. Both commercial and government aviation sectors have efforts to seek ways to lower fuel consumption through efficiency and reduce emissions. Development of a suitable alternative fuel that can be seamlessly used in place of conventional jet fuel is desirable. A strategy to enable this goal is to be fuel flexible; utilizing an array of fuels from bio-diesel to current jet fuel.
Technical Paper

A Reduced-Order Enclosure Radiation Modeling Technique for Aircraft Actuators

2010-11-02
2010-01-1741
Modern aircraft are aerodynamically designed at the edge of flight stability and therefore require high-response-rate flight control surfaces to maintain flight safety. In addition, to minimize weight and eliminate aircraft thermal cooling requirements, the actuator systems have increased power-density and utilize high-temperature components. This coupled with the wide operating temperature regimes experienced over a mission profile may result in detrimental performance of the actuator systems. Understanding the performance capabilities and power draw requirements as a function of temperature is essential in properly sizing and optimizing an aircraft platform. Under the Air Force Research Laboratory's (AFRL's) Integrated Vehicle and Energy Technology (INVENT) Program, detailed models of high performance electromechanical actuators (HPEAS) were developed and include temperature dependent effects in the electrical and mechanical actuator components.
Technical Paper

Selection of an Alternate Biocide for the International Space Station Internal Active Thermal Control System Coolant Loops

2003-07-07
2003-01-2568
The International Space Station (ISS) IATCS (Internal Active Thermal Control System) includes two internal coolant loops that use an aqueous based coolant for heat transfer. A silver salt biocide was used initially as an additive in the coolant formulation to control the growth and proliferation of microorganisms in the coolant loops. Ground-based and in-flight testing has demonstrated that the silver salt is rapidly depleted and not effective as a long-term biocide. Efforts are now underway to select an alternate biocide for the IATCS coolant loop with greatly improved performance. An extensive evaluation of biocides was conducted to select several candidates for test trials.
Technical Paper

The Personal Computer Transport Analyzer Program

2006-07-17
2006-01-2050
Since flight requirements often necessitate last-minute re-analysis, it became crucial to develop flexible and comprehensive transport phenomena analysis software that would quickly ensure all vehicle and payload requirements would be satisfied. The software would replace various mainframe-based software, such as the Thermal Radiation Analyzer System (TRASYS) and the Systems Improved Numerical Differencing Analyzer (SINDA). The software would need to have the flexibility to employ models that could be developed and modified as vehicle systems change. By use of event files which contain simple, intuitive commands, the characteristics of individual missions could be built as inputs to the model. By moving the Environmental Control & Life Support (ECLS) system model to the PC environment, each analyst would have execution, storage, and processing management control. And of course, software portability would be greatly increased.
Technical Paper

Microbial Characterization of Internal Active Thermal Control System (IATCS) Hardware Surfaces after Five Years of Operation in the International Space Station

2006-07-17
2006-01-2157
A flex hose assembly containing aqueous coolant from the International Space Station (ISS) Internal Active Thermal Control System (IATCS) consisting of a 2 foot section of Teflon hose and quick disconnects (QDs) and a Special Performance Checkout Unit (SPCU) heat exchanger containing separate channels of IATCS coolant and iodinated water used to cool spacesuits and Extravehicular Mobility Units (EMUs) were returned for destructive analyses on Shuttle return to flight mission STS-114. The original aqueous IATCS coolant used in Node 1, the Laboratory Module, and the Airlock consisted of water, borate (pH buffer), phosphate (corrosion control), and silver sulfate (microbiological control) at a pH of 9.5 ± 0.5.
Technical Paper

Centrifuge Accommodation Module (CAM) Cabin Air Temperature and Humidity Control Analysis

2005-07-11
2005-01-2801
The Centrifuge Accommodation Module (CAM) is designed to be one of the modules of the International Space Station (ISS) for performing on-orbit science experiments over an extended period of time. The common cabin air assembly (CCAA) is utilized as the hardware for air temperature and humidity control (THC) for the CAM module cabin. The CCAA unit contains a variable speed fan, heat exchanger, temperature control valve, water separator, temperature sensor, and electrical interface box. A temperature and humidity simulation model was developed to perform the THC analysis for the CCAA unit inside the CAM. This model applies both fixed control volume and a quasi-steady-state approach for computing critical information for evaluating/assessing CCAA system performance and capabilities.
Technical Paper

International Space Station Mobile Dosimetry Unit: A Comparison of Flight Measurements With Model Calculations

2004-07-19
2004-01-2277
Space radiation measurements were made on the International Space Station (ISS) with the Bulgarian Liulin-E094 Mobile Dosimetry Units (MDU) during 2001. The Liulin-E094 was part of the Dosimetric Mapping experiment lead by Dr. G. Reitz, DLR. Four MDUs were placed at fixed locations: one unit in the ISS “Unity” Node-1 and three units were located in the US Laboratory module. Space radiation flight measurements were obtained during the time period May 11 – July 26, 2001. In this paper we discuss the development of an MDU shielding model using combinatorial geometry and 3-D visualization and the orientation and placement at the four locations within the ISS. Four shielding distributions were generated for the combined ISS and MDU shielding models. The AP8MAX trapped proton model was used to compute the daily absorbed dose for the four MDUs and are compared with the flight measurements.
Technical Paper

Depth Dose Exposures in the Magnetosphere of Jupiter at the Icy Moons: Callisto, Ganymede, and Europa

2004-07-19
2004-01-2326
The highly successful Galileo mission made a number of startling and remarkable discoveries during its eight-year tour in the harsh Jupiter radiation environment. Two of these revelations were: 1) salty oceans lying under an icy crust of the Galilean moons: Europa, Ganymede and Callisto, and 2) the possible existence or remnants of life, especially on Europa, which has a very tenuous atmosphere of oxygen. Galileo radiation measurement data from the Energetic Particle Detector (EPD) have been used (Garrett et al., 2003) to update the trapped electron environment model, GIRE: Galileo Interim Radiation Environment, in the range of L (L: McIlwain parameter – see ref. 6) = 8–16 Rj (Rj: radius of Jupiter ≈ 71,400 km) with plans to extend the model for both electrons and protons as more data are reduced and analyzed.
Technical Paper

Selection of an Alternate Biocide for the ISS Internal Thermal Control System Coolant - Phase II

2004-07-19
2004-01-2472
The ISS (International Space Station) ITCS (Internal Thermal Control System) includes two internal coolant loops that utilize an aqueous based coolant for heat transfer. A silver salt biocide had previously been utilized as an additive in the coolant formulation to control the growth and proliferation of microorganisms within the coolant loops. Ground-based and in-flight testing demonstrated that the silver salt was rapidly depleted, and did not act as an effective long-term biocide. Efforts to select an optimal alternate biocide for the ITCS coolant application have been underway and are now in the final stages. An extensive evaluation of biocides was conducted to down-select to several candidates for test trials and was reported on previously.
Technical Paper

Adsorption and Desorption Effects on Carbon Brake Material Friction and Wear Characteristics

2005-10-03
2005-01-3436
The characteristics of the friction materials used in aircraft brakes are extremely important to the performance and safe operation of transport airplanes. These characteristics can change during exposure to environmental effects in the duty cycle, which can lead to problems, such as abnormally low friction, or brake induced vibration. Water vapor in the atmosphere produces a direct lubricant effect on carbon. Observed transition temperatures within the range of 140°C to 200°C, associated with increases in friction and wear of carbon brake materials, are attributed to water vapor desorption. Friction and wear transitions in the range of 500°C to 900°C may be associated with oxygen desorption.
Technical Paper

ISS Launch to Activation EVA Cooperative Design

2000-07-10
2000-01-2441
The design challenges presented by the late evolving International Space Station (ISS) Launch to Activation (LTA) thermal concerns required concerted effort and tradeoffs to be made between affected subsystems. The resulting design and mission planning modifications were made with consideration of thermal, electrical power system and extravehicular activity impacts in mind. It was an excellent exercise in cooperative problem solving that allowed each subsystem visibility into potential impacts of their efforts on other related systems and therefore work towards balanced solutions. It was also an excellent exercise in preparing these subsystems for future quick response cooperative problem solving that will be required to support ISS during its lifetime.
Technical Paper

Assessment of the Microbial Control Measures for the Temperature and Humidity Control Subsystem Condensing Heat Exchanger of the International Space Station

1999-07-12
1999-01-2109
In August 1997 NASA/Marshall Space Flight Center (MSFC) began a test with the objective of monitoring the growth of microorganisms on material simulating the surface of the International Space Station (ISS) Temperature and Humidity Control (THC) Condensing Heat Exchanger (CHX). The test addressed the concerns of potential uncontrolled microbial growth on the surface of the THC CHX subsystem. For this study, humidity condensate from a closed manned environment was used as a direct challenge to the surfaces of six cascades in a test set-up. The condensate was collected using a Shuttle-type CHX within the MSFC End-Use Equipment Testing Facility. Panels in four of the six cascades tested were coated with the ISS CHX silver impregnated hydrophilic coating. The remaining two cascade panels were coated with the hydrophilic coating without the antimicrobial component, silver. Results of the fourteen-month study are discussed in this paper.
X