Refine Your Search

Topic

Author

Search Results

Technical Paper

Application of a New Fleet Test Procedure to Investigate Emulsion Formation Tendencies of Motor Oils

1991-10-01
912398
There is concern over water-in-oil emulsion formation in passenger cars in the field. Crankcase pressure measurements in the ASTM Sequence IID rust test have been used to indicate possible emulsion formation tendencies of lubricants. This paper presents the development of a short duration emulsion fleet test procedure which demonstrates low car-to- car variability and correlates well with a previous fourmonth winter emulsion fleet test. Physical emulsion characteristics and used oil analyses are described. Evaluation of both Sequence IID reference oils and commercial oils in this field test reveals a lack of correlation between Sequence IID crankcase pressure results and field performance. The new procedure has been applied to investigate the impact of additive and base oil variations on the emulsion-forming tendencies of lubricants in the field. Base oil variables such as viscosity grade, composition, and volatility were evaluated.
Journal Article

Understanding MTF Additive Effects on Synchroniser Friction

2011-08-30
2011-01-2121
Specific frictional properties are essential to provide correct and pleasurable shifting in a manual transmission. Synchroniser rings are being manufactured from an increasingly wider range of materials, and so it is important to understand synchroniser-additive interactions in order to develop tailored lubricants that provide the desired frictional performance. This paper describes a study of the interaction of various friction modifier additives with a range of synchroniser materials in order to better understand the potential to develop lubricants that provide optimal frictional performance across a wide range of manual transmission-synchroniser systems. This presentation will outline the results of testing fluids with a range of synchroniser materials and will be followed by a future paper that will describe details of the fluids and analysis of their interactions with the different synchroniser surfaces.
Technical Paper

Understanding Soot Mediated Oil Thickening Through Designed Experimentation - Part 5: Knowledge Exhancement in the GM 6.5L

1997-10-01
972952
Our basic understanding of the chemical and physical nature of soot, its interaction with lubricant components and its role in promoting wear and oil thickening in heavy duty diesel engines continues to grow. Our current study in the GM 6.5L engine focuses on examining the effects of variations in base stock type (Group I vs. Group II), viscosity index improver or viscosity modifier (VM) chemistry (OCP vs. dispersant OCP), zinc dithiophosphate (ZDP) type and dispersant type (low MW vs. high MW) on roller follower wear, viscosity growth and other measured responses. In this study, more robust fluids were tested producing very low wear results and minimal viscosity increase of the lubricant. Fluids containing dispersant OCP (DOCP) and high MW dispersant produced a lower degree of wear, whereas varying the ZDP type (1° vs. 2°) showed no effect on wear. The use of Group II base stocks was associated with significantly lower viscosity increases.
Technical Paper

Methanol-Capable Vehicle Development: Meeting the Challenge in the Crankcase

1990-10-01
902152
A major drive to develop methanol-fueled vehicles began with the 1973 oil embargo. Early work with dedicated methanol-fueled vehicles demonstrated that lubricant choice influenced engine durability. The qualities desired were not defined by the gasoline engine oil classification system in place at the time. As a result oils were developed which optimized those properties deemed desirable for methanol fuel. The advent of fuel sensors made it possible to design a vehicle which can operate on gasoline or gasoline with varying levels of methanol without intervention by the operator. This created a need for a lubricant that can handle a diversity of methanol/gasoline mixtures as well as conventional gasoline. The paper reviews some of the lubricants that have been used in prototype methanol-capable vehicles and the improvement of these formulations to meet the latest gasoline engine performance criteria while maintaining satisfactory methanol performance.
Technical Paper

Fundamental Studies on ATF Friction, Part II

1998-10-19
982670
Interactions between automatic transmission fluid (ATF) components and composite friction materials and their effect on friction system performance continues to be an active area of interest to the automotive industry. A more fundamental understanding is needed of how base fluids, ATF additives, friction materials, and transmission design interact to produce the observed transmission system performance and durability. We herein report results from investigations carried out using a relatively thermo-oxidatively stable polyalphaolefin (PAO) base fluid treated with components representative of several additive types we previously reported to have significant negative effects on frictional performance. Secondly, we investigated a conventionally refined 150 N base oil treated with a calcium sulfonate detergent previously shown to improve friction performance.
Technical Paper

Influence of Additive Chemistry on Manual Transmission Synchronizer Performance

2002-05-06
2002-01-1697
The lubricant is a key component in the successful operation of a manual transmission, but it is important that the interactive effects with the friction material are understood. This paper examines the effect of several key additive components on the friction and wear performance of a single sinter composition in a carefully controlled laboratory test. In addition, the test method allows one to develop information about the shift behavior of the fluid-synchronizer material combination which provides useful information about shift quality. From the original experimental design program a predictive model was developed and an optimized formulation was tested as a validation of the results.
Technical Paper

Understanding Oil Aging in Extended Drain Axle & Transmission Applications

2001-09-24
2001-01-3592
Extended drain of axle and transmission lubricants has gained wide acceptance in both passenger car and commercial vehicle applications. Understanding how the lubricant changes during extended drain operations is crucial in determining appropriate lubricants and drain intervals for these applications. A suitable aging screen test with an established relationship to field performance is essential. Over the years numerous methods have been studied (DKA, GFC, ISOT, ASTM L-60) with varying degrees of success1,2,3. Current methods tend to be overly severe in comparison to field experience, hence the need for further work in this area. As a result of recent work, a lubricant aging test method has been developed which shows good correlation with field experience, giving us an effective tool in the development of long drain oils.
Technical Paper

Development of Novel Friction Modifier Technology Part 2: Vehicle Testing

2011-08-30
2011-01-2126
Requirements to reduce emissions and improve vehicle fuel economy continue to increase, spurred on by agreements such as the Kyoto Protocol. Lubricants can play a role in improving fuel economy, as evidenced by the rise in the number of engine oil specifications worldwide that require fuel economy improvements. A novel friction modifier technology has been developed to further improve vehicle fuel economy. The development of this novel friction modifier technology which contains only N,O,C,H was previously published along with the initial demonstration of performance in motorized Toyota engines. In order to validate this performance in fired engine tests, oil was evaluated in a Toyota Corolla Fielder with a 1500 cc gasoline engine. Testing was conducted in the Japanese 10-15 and JC08 modes, as well as the European EC mode, and the US FTP mode.
Technical Paper

Understanding MTF Additive Effects on Synchroniser Friction - Part 2, Structure Performance Analysis

2012-09-10
2012-01-1668
Specific frictional properties are essential to provide correct and pleasurable shifting in a manual transmission. Synchroniser rings are being manufactured from an increasingly wider range of materials, and it is important to understand synchroniser-additive interactions in order to develop tailored lubricants that provide the desired frictional performance. This paper describes a study of the interaction of various friction modifier additives with a range of synchroniser materials in order to better understand the potential to develop lubricants that provide optimal frictional performance across a wide range of manual transmission-synchroniser systems.
Technical Paper

An Investigation Into the Effect of Viscosity Modifiers and Base Oils on ASTM Sequence Via Fuel Economy

1997-10-01
972925
The international Lubricant Standardization and Approval Committee (ILSAC) GF-2 specification requires Passenger Car Motor Oils to provide enhanced fuel economy in a modern low friction engine (ASTM Sequence VIA). In previous SAE publications the authors have studied the boundary lubrication regime and documented the impact of friction modifiers and antiwear additives on Sequence VIA fuel economy. This paper shifts the focus to the hydrodynamic lubrication regime and details fundamental studies of viscosity modifiers and base oils on fuel economy as measured by this low friction engine. The viscosity modifiers were found to have surprisingly little impact on this test, while moving to base oils of higher viscosity index improved fuel economy as might be theoretically expected. A study of formulating SAE 5W-30 motor oils with base oils of increasing viscosity index showed the optimum fuel economy was able to be obtained with a high viscosity index base stock.
Technical Paper

Development of an Image Analysis System to Rate Injectors from the Cummins L10 Injector Depositing Test

1997-10-01
972902
This paper describes the development of a image analysis system that can be used to rate injectors from the Cummins L10 Injector Depositing Test. In the procedure, injectors are mounted on a computer controlled turntable and scanned using a CCD camera focused on the labyrinth flow area of the injector. The scanned monochrome images are processed and assigned an average gray scale rating. Results from the image analysis system are compared to the modified CRC Piston and Ring Rating method currently used within the Cummins test procedure. To do this, a series of injectors that have been rated by trained raters at a recent workshop were also rated via the image analysis system. The image analysis system ratings demonstrated a strong correlation (R = 0.85) to the CRC ratings. Using these same injectors, the image analysis method shows improvements in repeatability and reproducibility of approximately 50% over the current procedure.
Technical Paper

Modeling of ASTM Sequence IIIE Piston Ring Land Deposit Formation

1992-10-01
922293
Piston ring land deposit formation is a key performance criterion in the ASTM Sequence IIIE engine test. Because engine testing of lubricant formulation variables is expensive, a ring land deposit bench test was developed replicating the Sequence IIIE bulk oxidation and deposit formation mechanisms. Following an initial bulk oxidation of the candidate oils, deposits similar in chemical composition and morphology to Sequence IIIE ring land deposits are produced in a modified panel coker apparatus. Good correlation with the ASTM Sequence IIIE engine test has been established. Lubricant additive and base oil effects on oxidation control and deposit formation have been investigated. Their influences on lubricant formulation strategy are discussed.
Technical Paper

Assessing the Lubrication Needs for M85 Fueling Using Short-Trip Field and Engine Dynomometer Tests

1992-10-01
922299
The technology has been developed which will allow manufacturers to produce cars capable of running on methanol/gasoline blends with a methanol content up to 85% (i.e., M85). These cars will operate on varying methanol/gasoline ratios without any adjustments from the driver. The dual-fuel capability is attractive since vehicle use will not be handicapped by a restricted fuel distribution system. In addition, it provides the option of running on an environmentally “cleaner” fuel where it is available. The advent of fuel-flexible vehicles encourages the development of lubricants which will satisfy the demands of both fuels. The unique properties of methanol, however, increase the challenges of meeting the lubricant performance needs. Field and engine dynamometer testing have been aimed at understanding the response of key lubricant variables with M85. Short-trip, cold-weather conditions have been of particular concern.
Technical Paper

Diesel Fuel Properties and Additive Effects on Dl Injector Deposit Formation

1993-10-01
932738
A test was developed by the Cummins Engine Company to evaluate Diesel fuel quality and potential additive effects. This test utilizes a Cummins L10 Diesel engine with a PT fuel system and stepped plunger injectors. A modified CRC rating system is used to quantify deposit levels. This paper further investigates the L10 Injector Depositing Test and will focus on Diesel fuel and additive variables. In the original work, the bulk of the data was collected on an industry standard reference fuel, Cat 1-H, as opposed to commercially available Diesel fuels. Commercially available Diesel fuel varies in composition with regard to sulfur level, percent aromatics, final distillation end point, and cetane number. To evaluate these fuel properties and their possible effects on injector deposit formation, two test matrices were designed. The first experiment is a 12-run fractional factorial design with four factors: additive level, sulfur, aromatics, and 90 percent distillation point (T90).
Technical Paper

Diesel Fuel Lubricity Development of a Constant Load Scuffing Test Using the Ball on Cylinder Lubricity Evaluator (BOCLE)

1993-10-01
932691
A test method has been developed which provides for the rapid measurement of the scuffing performance of diesel fuel using the Ball-On-Cylinder Lubricity Evaluator (BOCLE). A test can be completed in less than one hour. Data has been generated indicating that the method achieves good discrimination between fuels of varying lubricity and correlates well with fuel performance as measured in pump tests.
Technical Paper

Effects of Fuel and Additives on Combustion Chamber Deposits

1994-10-01
941890
The effects of gasoline composition, as represented in typical regular and premium unleaded gasolines and fuel additives, on Combustion Chamber Deposits (CCD) were investigated in BMW and Ford tests. In addition, the influences of engine lubricant oil and ethanol oxygenate on CCD were examined in Ford 2.3L engine dynamometer tests. Also, additive effects of packages based on mineral oil fluidizers versus synthetic fluidizers were studied in several different engines for CCD. Finally, a new method for evaluating the effect of fluidizers on valve sticking is introduced.
Technical Paper

Formulating for ILSAC GF-2 - Part 2: Obtaining Fuel Economy Enhancement from a Motor Oil in a Modern Low Friction Engine

1995-10-01
952343
The proposed International Lubricant Standardization and Approval Committee (ILSAC) GF-2 specification requires Passenger Car Motor Oils to provide enhanced fuel economy in a modern low friction engine (Sequence VIA). This paper details fundamental studies of lubricant effects on fuel economy as measured by this low friction engine. Several conventional friction modifiers were tested with surprising results. One ester friction modifier, Ester B, which provides excellent fuel economy improvement in the Sequence VI, was found to be detrimental to the Sequence VIA. A second ester friction modifier, Ester A, performed as expected. Additionally, two molybdenum compounds, which are reported to provide excellent fuel economy in the Sequence VI, showed no fuel economy benefit in the Sequence VIA.
Technical Paper

Rheological and Electrical Test Methods for Evaluation of Structure Development in Oil and Water Mixtures

1995-02-01
951031
Intentionally adding water to oil, in the laboratory, provides an indication of the oil's ability to tolerate the presence of water. Various characteristics, such as emulsion, haze or separation, may be observed. Some blends of oil and water have been shown to form structures when left undisturbed. A visual, qualitative, storage test is capable of detecting this phenomenon as the presence or absence of structure. However, the time frame of formation can be on the order of days or weeks and is sensitive to handling and temperature effects. Quantitative methods are required for any evaluation of chemistry, temperature and handling effects on the rate and strength of structure formation. This paper describes rheological and electrical methods which directly and indirectly measure the tendency to form a structure at the molecular level, yielding rate of formation and strength information.
Technical Paper

Understanding Soot Mediated Oil Thickening Through Designed Experimentation - Part 1: Mack EM6-287, GM 6.2L

1995-10-01
952527
Statistically designed experiments were developed to investigate the nature of soot, to understand its role in oil viscosity growth, and to study the interactions involved with additives that inhibit viscosity growth. The matrix was designed to examine effects of engine type, mode of operation, and the oil formulations. Mack EM6-285 and GM 6.2L engines operating under both high speed and high torque conditions were used in this study. An API CE\SG quality lubricant was used as the baseline. The detergent sulfonate substrate was varied from standard to three-fold levels; the dispersant TBN contribution ranged from 1.1 to over 3.0. The surface and bulk exhaust soot properties were determined. Colloidal suspension stability and rheology were measured to evaluate the design factor effects on the formation of soot and subsequent effects on oil thickening. The Mack EM6-285 engine produced less soot, less oil viscosity growth, and less oxidation than the GM 6.2L engine.
Technical Paper

Developing Heavy Duty Diesel Lubricants to Meet the Extended Service Interval Challenge

1995-10-01
952551
Two prominent trends are facing diesel engine builders and their customers, environmental regulations and cost containment. Increasingly stringent exhaust emissions regulations have necessitated major changes in diesel engine design. Combustion temperatures and fuel injection pressures continue to rise. This and other factors, such as lower oil consumption for exhaust particulate reduction, place greater demands on crankcase lubricating oils. Another prominent environmentally related cost factor facing fleet operators is that of waste oil management. The inventory and disposal of used lubricants must now be handled in accordance with regulated guidelines and their associated costs. To compensate, new lubricant categories have been designed in both North America and Europe, such that 1994 and later emission controlled engines will perform as reliably as their earlier counterparts.
X