Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Journal Article

Design and Operation of a Brake and Throttle Robot

2009-04-20
2009-01-0429
This paper describes the design and implementation of the SEA, Ltd. Brake and Throttle Robot (BTR). Presented are the criteria used in the initial design and the development and testing of the BTR, as well as some test results achieved with the device. The BTR is designed for use in automobiles and light trucks. It is based on a servomotor driven ballscrew, which in turn operates either the brake or accelerator. It is easily portable from one vehicle to another and compact enough to fit even smaller vehicles. The BTR is light enough so as to have minimal effect on the measurement of vehicle parameters. The BTR is designed for use as a stand-alone unit or as part of a larger control system such as the Automated Test Driver (ATD) yet allows for the use of a test driver for safety, as well as test selection, initiation, and monitoring. Installation in a vehicle will be described, as well as electronic components that support the BTR.
Technical Paper

Estimation of Fuel Economy on Real-World Routes for Next-Generation Connected and Automated Hybrid Powertrains

2020-04-14
2020-01-0593
The assessment of fuel economy of new vehicles is typically based on regulatory driving cycles, measured in an emissions lab. Although the regulations built around these standardized cycles have strongly contributed to improved fuel efficiency, they are unable to cover the envelope of operating and environmental conditions the vehicle will be subject to when driving in the “real-world”. This discrepancy becomes even more dramatic with the introduction of Connectivity and Automation, which allows for information on future route and traffic conditions to be available to the vehicle and powertrain control system. Furthermore, the huge variability of external conditions, such as vehicle load or driver behavior, can significantly affect the fuel economy on a given route. Such variability poses significant challenges when attempting to compare the performance and fuel economy of different powertrain technologies, vehicle dynamics and powertrain control methods.
Technical Paper

Automated Steering Controller for Vehicle Testing

2007-08-05
2007-01-3647
Automating road vehicle control can increase the range and reliability of dynamic testing. Some tests, for instance, specify precise steering inputs which human test drivers are only able to approximate, adding uncertainty to the test results. An automated steering system has been developed which is capable of removing these limitations. This system enables any production car or light truck to follow a user-defined path, using global position feedback, or to perform specific steering sequences with excellent repeatability. The system adapts itself to a given vehicle s handling characteristics, and it can be installed and uninstalled quickly without damage or permanent modification to the vehicle.
Technical Paper

Vehicle to Vehicle Interaction Maneuvers Choreographed with an Automated Test Driver

2009-04-20
2009-01-0440
Modern passenger cars are being equipped with advanced driver assistance systems such as lane departure warning, collision avoidance systems, adaptive cruise control, etc. Testing for operation and effectiveness of these warning systems involves interaction between vehicles. While dealing with multiple moving vehicles, obtaining discriminatory results is difficult due to the difficulty in minimizing variations in vehicle separation and other parameters. This paper describes test strategies involving an automated test driver interacting with another moving vehicle. The autonomous vehicle controls its state (including position and speed) with respect to the target vehicle. Choreographed maneuvers such as chasing and overtaking can be performed with high accuracy and repeatability that even professional drivers have difficulty achieving. The system is also demonstrated to be usable in crash testing.
Technical Paper

Closed Loop Steering System Model for the National Advanced Driving Simulator

2004-03-08
2004-01-1072
This paper presents the details of the model for the physical steering system used on the National Advanced Driving Simulator. The system is basically a hardware-in-the-loop (steering feedback motor and controls) steering system coupled with the core vehicle dynamics of the simulator. The system's torque control uses cascaded position and velocity feedback and is controlled to provide steering feedback with variable stiffness and dynamic properties. The reference model, which calculates the desired value of the torque, is made of power steering torque, damping function torque, torque from tires, locking limit torque, and driver input torque. The model also provides a unique steering dead-band function that is important for on-center feel. A Simulink model of the hardware/software is presented and analysis of the simulator steering system is provided.
Technical Paper

The 2002 Ohio State University FutureTruck - The BuckHybrid002

2003-03-03
2003-01-1269
This year, in the third year of FutureTruck competition, the Ohio State University team has taken the challenge to convert a 2002 Ford Explorer into a more fuel efficient and environmentally friendly SUV. This goal was achieved by use of a post-transmission, charge sustaining, parallel hybrid diesel-electric drivetrain. The main power source is a 2.5-liter, 103 kW advanced CIDI engine manufactured by VM Motori. A 55 kW Ecostar AC induction electric motor provides the supplemental power. The powertrain is managed by a state of the art supervisory control system which optimizes powertrain characteristics using advanced energy management and emission control algorithms. A unique driver interface implementing advanced telematics, and an interior designed specifically to reduce weight and be more environmentally friendly add to the utility of the vehicle as well as the consumer appeal.
Technical Paper

Analysis of Human Driver Behavior in Highway Cut-in Scenarios

2017-03-28
2017-01-1402
The rapid development of driver assistance systems, such as lane-departure warning (LDW) and lane-keeping support (LKS), along with widely publicized reports of automated vehicle testing, have created the expectation for an increasing amount of vehicle automation in the near future. As these systems are being phased in, the coexistence of automated vehicles and human-driven vehicles on roadways will be inevitable and necessary. In order to develop automated vehicles that integrate well with those that are operated in traditional ways, an appropriate understanding of human driver behavior in normal traffic situations would be beneficial. Unlike many research studies that have focused on collision-avoidance maneuvering, this paper analyzes the behavior of human drivers in response to cut-in vehicles moving at similar speeds. Both automated and human-driven vehicles are likely to encounter this scenario in daily highway driving.
Technical Paper

Development of a Computer Controlled Automated Steering Controller

2005-04-11
2005-01-0394
This paper describes the design and development of the hardware, electronics, and software components of a state-of-the-art automated steering controller, the SEA, Ltd. ASC. The function of the ASC is to input to a vehicle virtually any steering profile with both high accuracy and repeatability. The ASC is designed to input profiles having steering rates and timing that are in excess of the limits of a human driver. The ASC software allows the user to specify steering profiles and select controller settings, including motor controller gains, through user-interface windows. This makes it possible for the test driver to change steering profiles and settings immediately after running any test maneuver. The motor controller used in the ASC offers self-contained signal input, output, and data storage capabilities. Thus, the ASC can operate as a standalone steering machine or it can be incorporated into typical existing, on-vehicle data acquisition systems.
Technical Paper

Experimental Steering Feel Performance Measures

2004-03-08
2004-01-1074
This paper discusses techniques for estimating steering feel performance measures for on-center and off-center driving. Weave tests at different speeds are used to get on-center performances for a 1994 Ford Taurus, a 1998 Chevrolet Malibu, and a 1997 Jeep Cherokee. New concepts analyzing weave tests are added, specifically, the difference of the upper and lower curves of the hysteresis and their relevance to driver load feel. For the 1997 Jeep Cherokee, additional tests were done to determine steering on-center transition properties, steering flick tests, and the transfer function of handwheel torque feel to handwheel steering input. This transfer function provides steering system stiffness in the frequency domain. The frequency domain analysis is found to be a unique approach for characterizing handwheel feel, in that it provides a steering feel up to maximum steering rate possible by the drivers.
Technical Paper

Consumer Braking Performance Information Initiative

1999-03-01
1999-01-1291
A test procedure that rates brake performance must control variability so that measured differences between vehicles are real. Tests were conducted using standard brake test procedures with three drivers in three cars on wet and dry asphalt with the ABS working and disabled. The differences between vehicles were greater than differences due to ABS condition, surface condition, and drivers. The procedure measured differences between all the vehicles with statistical certainty but used many replications and drivers. If only large differences in performance need to be distinguished, fewer replications and drivers will be needed.
Technical Paper

Infrastructure Camera Video Data Processing of Traffic at Roundabouts

2021-04-06
2021-01-0165
Roundabout is a unique approach of managing traffic at intersections because it relies on driver’s instincts of safety. Roundabouts are considered safer than other ways of intersection traffic management due to low speed limits, smoother merging, and reduced fatal accidents. Despite their benefits and increasing usage, there is lack of clear understanding of the roundabouts, particularly due to scarcity of data and simulation models and the complexity of the structure. Real-time and offline traffic data recorded at a roundabout provides a basis for 1) identification of the safety issues, 2) understanding unexpected and risky driver behavior, 3) proposing potential mobility solutions, and 4) developing simulation models. The processed data may be used in controlling metered roundabouts, communicating with connected and automated vehicles (CAVs) etc. In this paper an approach to obtain useful traffic information from video feed data at a roundabout is presented.
Technical Paper

Predicting Desired Temporal Waypoints from Camera and Route Planner Images using End-To-Mid Imitation Learning

2021-04-06
2021-01-0088
This study is focused on exploring the possibilities of using camera and route planner images for autonomous driving in an end-to-mid learning fashion. The overall idea is to clone the humans’ driving behavior, in particular, their use of vision for ‘driving’ and map for ‘navigating’. The notion is that we humans use our vision to ‘drive’ and sometimes, we also use a map such as Google/Apple maps to find direction in order to ‘navigate’. We replicated this notion by using end-to-mid imitation learning. In particular, we imitated human driving behavior by using camera and route planner images for predicting the desired waypoints and by using a dedicated control to follow those predicted waypoints. Besides, this work also places emphasis on using minimal and cheaper sensors such as camera and basic map for autonomous driving rather than expensive sensors such Lidar or HD Maps as we humans do not use such sophisticated sensors for driving.
Journal Article

Braking Behavior of Truck Drivers in Crash Imminent Scenarios

2014-09-30
2014-01-2380
Dynamic Brake Support (DBS) is a safety system that has been applied to various passenger cars and has been shown to be effective at assisting drivers in avoiding or mitigating rear-end collisions. The objective of a DBS system is to ensure that the brake system is applied quickly and at sufficient pressure when a driver responds to a collision imminent situation. DBS is capable of improving braking response due to a passenger car driver's tendency to utilize multi-stage braking. Interest is developing in using DBS on commercial vehicles. In order to evaluate the possible improvement in safety that could be realized through the use of DBS, driver braking behavior must first be analyzed to confirm that improvement is possible and necessary. To determine if this is the case, a study of the response of truck drivers' braking behavior in collision imminent situations is conducted. This paper presents the method of evaluation and results.
Technical Paper

Enhanced Safety of Heavy-Duty Vehicles on Highways through Automatic Speed Enforcement – A Simulation Study

2024-04-09
2024-01-1964
Highway safety remains a significant concern, especially in mixed traffic scenarios involving heavy-duty vehicles (HDV) and smaller passenger cars. The vulnerability of HDVs following closely behind smaller cars is evident in incidents involving the lead vehicle, potentially leading to catastrophic rear-end collisions. This paper explores how automatic speed enforcement systems, using speed cameras, can mitigate risks for HDVs in such critical situations. While historical crash data consistently demonstrates the reduction of accidents near speed cameras, this paper goes beyond the conventional notion of crash occurrence reduction. Instead, it investigates the profound impact of driver behavior changes within desired travel speed distribution, especially around speed cameras, and their contribution to the safety of trailing vehicles, with a specific focus on heavy-duty trucks in accident-prone scenarios.
Technical Paper

Path Planning and Robust Path Tracking Control of an Automated Parallel Parking Maneuver

2024-04-09
2024-01-2558
Driver’s license examinations require the driver to perform either a parallel parking or a similar maneuver as part of the on-road evaluation of the driver’s skills. Self-driving vehicles that are allowed to operate on public roads without a driver should also be able to perform such tasks successfully. With this motivation, the S-shaped maneuverability test of the Ohio driver’s license examination is chosen here for automatic execution by a self-driving vehicle with drive-by-wire capability and longitudinal and lateral controls. The Ohio maneuverability test requires the driver to start within an area enclosed by four pylons and the driver is asked to go to the left of the fifth pylon directly in front of the vehicle in a smooth and continuous manner while ending in a parallel direction to the initial one. The driver is then asked to go backwards to the starting location of the vehicle without stopping the vehicle or hitting the pylons.
X