Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Debris Signature Analysis: A Method for Assessing the Detrimental Effect of Specific Debris Contaminated Lubrication Environments

Various methods for evaluating the effectiveness of debris resistant bearings have been proposed for development. Once evaluation methods are well established to select bearings, the user is faced with assessing severity and detrimental effects of a specific application's lubricant contamination on bearing performance. Many analysis tools have been suggested for determining this impact, including particle analysis for size distribution, type of material and contamination level. A novel approach for determining severity of damage has been investigated which attempts to integrate these typical tools with actual damage to functional surfaces. It seeks to provide a practical approach and is appropriately labeled Debris Signature Analysis. Results of actual assessments will be discussed and the assessment method described.
Technical Paper

Air-Melted Steel With Ultra-Low Inclusion Stringer Content Further Improves Bearing Fatigue Life

Economical steels with improved fatigue life performance continue to be sought for more demanding applications such as in the automotive and aerospace industries. Researchers at The Timken Company, pursuing improved fatigue performance in tapered roller bearings, have found that life is limited by large inclusion stringers that still exist in today's highly publicized steels. Stringers, by definition, are clusters of individual oxide particles observable in wrought steel. An ultrasonic method has been used to quantify the frequency of these stringers in steel in bearing components. The total length of these stringers has been correlated with bearing fatigue life. The use of this ultrasonic tool has expedited the development of the newly introduced Parapretnium™ steel. This air-melted steel has a stringer content less than nearly all of the other worldwide bearing steels evaluated and, in fact, its stringer content is approaching those low levels found only in vacuum-remelted steels.
Technical Paper

A Bearing Life Prediction Method for Utilizing Progressive Functional Surface Damage Analysis from a Debris Contaminated Lubrication Environment

Many lubrication environments in various equipment applications are inherently contaminated with debris and require mechanical components that are, as much as possible, resistant to the potential detrimental effects of debris particles. Many design engineers and lubricant specialists often overlook potential relationships between the various component failure modes, lubricant debris contamination levels, and engineering solutions that are created to overcome them. In addition, design engineers are in need of an analysis tool that can combine the various amounts of cumulative bearing damage occurring over time. As an example, bearing functional surfaces in many cases are progressively damaged over the life of the equipment. A new surface analysis tool is available which allows surface damage analysis to be completed at various stages of equipment life. This new surface analysis tool is appropriately called Debris Signature Analysis(sm).
Technical Paper

Repair as an Option to Extend Bearing Life and Performance

Repair and remanufacture has become an accepted method to extend bearing useful life in many applications, including positions within off-highway construction and mining vehicles. However, it has not been an easy task for equipment owners to become confident in the use of repaired bearings, nor has it been an easy task for engineers to select the positions best suited for repair, as robust analytical methods to predict performance are not available. This has lead to many field test campaigns of repaired bearings on different bearing positions until the equipment owners gain enough confidence to make it part of their normal operating procedures. This paper aims to reduce the test and validation cycle that occurs with the use of repaired and remanufactured bearings by developing analytical methods to predict bearing performance. Life prediction algorithms are presented covering the different levels of repair available.