Refine Your Search

Topic

Search Results

Technical Paper

Efficient Engine Models Using Recursive Formulation of Multibody Dynamics

2001-04-30
2001-01-1594
Engine models with fully coupled dynamic effects of the engine components can be constructed through the use of commercial multibody dynamics codes, such as ADAMS and DADS. These commercial codes provide a modeling platform for very general mechanical systems and the time and effort required to learn how to use them may preclude their use for some engine designers. In this paper, we review an alternative and specialized modeling platform that functions as a template for engine design. Relative to commercial codes, this engine design template employs a recursive formulation of multibody dynamics, and thus it leads directly to the minimum number of equations of motion describing the dynamic response of the engine by a priori satisfaction of kinematic constraints. This is achieved by employing relative coordinates in lieu of the absolute coordinates adopted in commercial multibody dynamics codes. This engine modeling tool requires only minimal information for the input data.
Technical Paper

Integrated, Feed-Forward Hybrid Electric Vehicle Simulation in SIMULINK and its Use for Power Management Studies

2001-03-05
2001-01-1334
A hybrid electric vehicle simulation tool (HE-VESIM) has been developed at the Automotive Research Center of the University of Michigan to study the fuel economy potential of hybrid military/civilian trucks. In this paper, the fundamental architecture of the feed-forward parallel hybrid-electric vehicle system is described, together with dynamic equations and basic features of sub-system modules. Two vehicle-level power management control algorithms are assessed, a rule-based algorithm, which mainly explores engine efficiency in an intuitive manner, and a dynamic-programming optimization algorithm. Simulation results over the urban driving cycle demonstrate the potential of the selected hybrid system to significantly improve vehicle fuel economy, the improvement being greater when the dynamic-programming power management algorithm is applied.
Technical Paper

Multi-Zone DI Diesel Spray Combustion Model for Cycle Simulation Studies of Engine Performance and Emissions

2001-03-05
2001-01-1246
A quasi-dimensional, multi-zone, direct injection (DI) diesel combustion model has been developed and implemented in a full cycle simulation of a turbocharged engine. The combustion model accounts for transient fuel spray evolution, fuel-air mixing, ignition, combustion and NO and soot pollutant formation. In the model, the fuel spray is divided into a number of zones, which are treated as open systems. While mass and energy equations are solved for each zone, a simplified momentum conservation equation is used to calculate the amount of air entrained into each zone. Details of the DI spray, combustion model and its implementation into the cycle simulation of Assanis and Heywood [1] are described in this paper. The model is validated with experimental data obtained in a constant volume chamber and engines. First, predictions of spray penetration and spray angle are validated against measurements in a pressurized constant volume chamber.
Technical Paper

Assessment of Alternative Strategies for Reducing Hydrocarbon and Carbon Monoxide Emissions from Small Two-Stroke Engines

1996-02-01
960743
Five small two-stroke engine designs were tested at different air/fuel ratios, under steady state and transient cycles. The effects of combustion chamber design, carburetor design, lean burning, and fuel composition on performance, hydrocarbon and carbon monoxide emissions were studied. All tested engines had been designed to run richer than stoichiometric in order to obtain satisfactory cooling and higher power. While hydrocarbon and carbon monoxide emissions could be greatly reduced with lean burning, engine durability would be worsened. However, it was shown that the use of a catalytic converter with acceptably lean combustion was an effective method of reducing emissions. Replacing carburetion with in-cylinder fuel injection in one of the engines resulted in a significant reduction of hydrocarbon and carbon monoxide emissions.
Technical Paper

Helmholtz Resonator: A Multidimensional Analytical, Computational, and Experimental Study

1995-05-01
951263
Helmholtz resonators are widely used for noise reduction in vehicle induction and exhaust systems. This study investigates the effect of specific cavity dimensions of these resonators theoretically, computationaly, and experimentally. An analytical model is developed for circular concentric resonators to account for the multidimensional wave propagation in both the neck and the cavity. Driving this model with an oscillating piston isolates the interface between the neck and the resonator volume, thereby allowing, at this location, for an accurate evaluation of the empirical end correction, which is often used with the classical lumped approach in an attempt to incorporate the effect of multidimensional behavior at the transitions. The analytical method developed in the study is then compared with a similar one-dimensional analytical model that also allows for wave propagation in the neck and cavity.
Technical Paper

The Effect of Vehicle Exhaust System Components on Flow Losses and Noise in Firing Spark-Ignition Engines

1995-05-01
951260
Sound attenuation and flow loss reduction are often two competing demands in vehicle breathing systems. The present study considers a full vehicle exhaust system and investigates both the sound attenuation and the flow performance of production configurations including the catalyst, the resonator, and the muffler. Dynamometer experiments have been conducted with a firing Ford 3.0L, V-6 engine at wide-open throttle with speeds ranging from 1000 to 5000 rpm. Measurements including the flow rates, the temperatures and the absolute dynamic pressures of the hot exhaust gases at key locations (upstream and downstream of every component) with fast-response, water-cooled piezo-resistive pressure transducers facilitate the calculation of acoustic performance of each component, as well as the determination of flow losses caused by these elements and their influence on the engine performance.
Technical Paper

First and Second Law Analyses of a Naturally-Aspirated, Miller Cycle, SI Engine with Late Intake Valve Closure

1998-02-23
980889
A naturally-aspirated, Miller cycle, Spark-Ignition (SI) engine that controls output with variable intake valve closure is compared to a conventionally-throttled engine using computer simulation. Based on First and Second Law analyses, the two load control strategies are compared in detail through one thermodynamic cycle at light load conditions and over a wide range of loads at 2000 rpm. The Miller Cycle engine can use late intake valve closure (LIVC) to control indicated output down to 35% of the maximum, but requires supplemental throttling at lighter loads. The First Law analysis shows that the Miller cycle increases indicated thermal efficiency at light loads by as much as 6.3%, primarily due to reductions in pumping and compression work while heat transfer losses are comparable.
Technical Paper

Hydrocarbon Emission Sequence Related to Cylinder Mal-Distribution in a L-Head Engine

1994-03-01
940305
The distribution of fuel-air mixtures in many L-head engines is not homogeneous. If local mixture is too rich or lean, incomplete combustion occurs. This can play a major role in unburned hydrocarbon and carbon monoxide emissions. Fuel-air mixture distribution depends on in-cylinder swirl and turbulence and is directly related to intake manifold configuration, fuel delivery system design and combustion chamber shape. Understanding the spatial mixture distribution may help improve the design of these aforementioned components. Consequently, a more complete combustion process may result, and emissions reduced. A method that measures the emission of CH and C2 radicals via the use of an optical fiber bundle was used in this research to map the mixture uniformity in the combustion chamber. The intensity ratio (IC2/ICH) was correlated to the fuel-air equivalence ratio. The mixture distribution measured was then correlated with the hydrocarbon emission sequence.
Technical Paper

Friction Measurement in the Valve Train with a Roller Follower

1994-03-01
940589
The valve train was instrumented to record the instantaneous roller speed, roller pin friction torque, pushrod forces, and cam speed. Results are presented for one exhaust valve of a motored Cummins L-10 engine. The instantaneous cam/roller friction force was determined from the instantaneous roller speed and the pin friction torque. The pushrod force and displacement were also measured. Friction work loss was determined for both cam and roller interface as well as the upper valve train which includes the valve pushrod, rocker arm, valve guide, and valve. Roller follower slippage on the cam was also determined. A kinematic analysis with the measured data provided the normal force and contact stress at cam/roller interface.(1) Finally, the valve train friction was found to be in the mixed lubrication regime.(2) Further efforts will address the theoretical analysis of valve train friction to predict roller slippage.
Technical Paper

Optimizing Gaseous Fuel-Air Mixing in Direct Injection Engines Using an RNG Based k-ε Model

1998-02-23
980135
Direct injection of natural gas under high pressure conditions has emerged as a promising option for improving engine fuel economy and emissions. However, since the gaseous injection technology is new, limited experience exists as to the optimum configuration of the injection system and associated combustion chamber design. The present study uses KIVA-3 based, multidimensional modeling to improve the understanding and assist the optimization of the gaseous injection process. Compared to standard k-ε models, a Renormalization Group Theory (RNG) based k-ε model [1] has been found to be in better agreement with experiments in predicting gaseous penetration histories for both free and confined jet configurations. Hence, this validated RNG model is adopted here to perform computations in realistic engine geometries.
Technical Paper

Model Analysis of a Diesel Engine Cylinder Block using HEXA8 Finite Elements - Analysis and Experiment

1988-10-01
881853
Analytical and experimental investigations of a diesel engine cylinder block are performed. An attempt is made to reduce modeling and analysis costs in the design process of an engine. Traditionally, the engine has been modeled using either 8-node or 20-node solid elements for stress and thermal analyses and modeled using 4-node plate and shell elements for the dynamic analysis. In this paper, a simpler finite element modeling technique using only 8 node solid elements for both dynamic and static analyses is presented. Based on this integrated modeling technique of finite elements, eigenvalues are calculated and compared with the experimental data obtained from modal testing of an actual engine cylinder block.
Technical Paper

Piston-Ring Assembly Friction Modeling by Similarity Analysis

1993-03-01
930794
A semi-empirical engine piston/ring assembly friction model based on the concept of the Stribeck diagram and similarity analysis is described. The model was constructed by forming non-dimensional parameters based on design and operating conditions. Friction data collected by the Fixed-Sleeve method described in [1]* at one condition, were used to correlate the coefficient of friction of the assembly and the other non-dimensional parameters. Then, using the instantaneous cylinder pressure as input together with measured and calculated design and operating parameters, reasonable assembly friction and fmep predictions were obtained for a variety of additional conditions, some of which could be compared with experimental values. Model inputs are component dimensions, ring tensions, piston skirt spring constant, piston skirt thermal expansion, engine temperatures, speed, load and oil viscosity.
Technical Paper

Real Time Detection Filters for Onboard Diagnosis of Incipient Failures

1989-02-01
890763
This paper presents the real time implementation of detection filters for the diagnosis of incipient failures in electronically controlled internal combustion (IC) engines. The detection filters are implemented in a production vehicle. Recent results [1] have demonstrated the feasibility of a model-based failure detection and isolation (FDI) methodology for detecting partially failed components in electronically controlled vehicle subsystems. The present paper describes the real time application of the FDI concept to the detection of faults in sensors associated with the engine/controller In a detection filter, the performance of the engine/controller system is continuously compared to a prediction based on sensor measurements and an analytical model (typically a control model) of the system. Any discrepancy between actual and predicted performance is analyzed to identify the unique failure signatures related to specific system components.
Technical Paper

Design and Development of a Turbocharged E85 Engine for Formula SAE Racing

2008-06-23
2008-01-1774
A summary of the design and development process for a Formula SAE engine is described. The focus is on three fundamental elements on which the entire engine package is based. The first is engine layout and displacement, second is the fuel type, and third is the air induction method. These decisions lead to a design around a 4-cylinder 600cc motorcycle engine, utilizing a turbocharger and ethanol E-85 fuel. Concerns and constraints involved with vehicle integration are also highlighted. The final design was then tested on an engine dynamometer, and finally in the 2007 M-Racing FSAE racecar.
Technical Paper

Comparison of Diesel Oxidation Catalyst Performance on an Engine and a Gas Flow Reactor

2007-04-16
2007-01-0231
This paper analyzes and compares reactor and engine behavior of a diesel oxidation catalyst (DOC) in the presence of conventional diesel exhaust and low temperature premixed compression ignition (PCI) diesel exhaust. Surrogate exhaust mixtures of n-undecane (C11H24), ethene (C2H4), CO, O2, H2O, NO and N2 are defined for conventional and PCI combustion and used in the gas flow reactor tests. Both engine and reactor tests use a DOC containing platinum, palladium and a hydrocarbon storage component (zeolite). On both the engine and reactor, the composition of PCI exhaust increases light-off temperature relative to conventional combustion. However, while nominal conditions are similar, the catalyst behaves differently on the two experimental setups. The engine DOC shows higher initial apparent HC conversion efficiencies because the engine exhaust contains a higher fraction of trappable (i.e., high boiling point) HC.
Technical Paper

Measurements and Predictions of Steady-State and Transient Stress Distributions in a Diesel Engine Cylinder Head

1999-03-01
1999-01-0973
A combined experimental and analytical approach was followed in this work to study stress distributions and causes of failure in diesel cylinder heads under steady-state and transient operation. Experimental studies were conducted first to measure temperatures, heat fluxes and stresses under a series of steady-state operating conditions. Furthermore, by placing high temperature strain gages within the thermal penetration depth of the cylinder head, the effect of thermal shock loading under rapid transients was studied. A comparison of our steady-state and transient measurements suggests that the steady-state temperature gradients and the level of temperatures are the primary causes of thermal fatigue in cast-iron cylinder heads. Subsequently, a finite element analysis was conducted to predict the detailed steady-state temperature and stress distributions within the cylinder head. A comparison of the predicted steady-state temperatures and stresses compared well with our measurements.
Technical Paper

A Generic Methodology for Chamber Flame Geometry Modeling

2000-10-16
2000-01-2797
Combustion flame geometry calculation is a critical task in the design and analysis of combustion engine chamber. Combustion flame directly influences the fuel economy, engine performance and efficiency. Currently, many of the flame geometry calculation methods assume certain specific chamber and piston top shapes and make some approximations to them. Even further, most methods can not handle multiple spark plug set-ups. Consequently, most of the current flame geometry calculation methods do not give accurate results and have some built-in limitations. They are particularly poor for adapting to any kind of new chamber geometry and spark plug set-up design. This report presents a novel methodology which allows the accurate calculation of flame geometry regardless of the chamber geometry and the number of spark plugs. In this methodology, solid models are used to represent the components within the chamber and unique attributes (colors) are attached respectively to these components.
Technical Paper

Crank-Angle Resolved Imaging of Fuel Distribution, Ignition and Combustion in a Direct-Injection Spark-Ignition Engine

2005-10-24
2005-01-3753
A combination of imaging techniques for investigations of highly transient processes and cyclic variations in internal combustion engines is presented. The single high-speed camera setup uses a CMOS camera combined with a two-stage image-intensifier and two excimer lasers. Fuel mixing, ignition and combustion were monitored via planar laser induced fluorescence imaging of toluene as a tracer that was added to iso-octane in combination with the simultaneous recording of light emission from the spark plasma and OH* chemiluminescence of the developing flame. Image frame rates of 12 kHz for hundreds of cycles were achieved. Application to misfire events in a spray-guided gasoline direct-injection engine is described to illustrate the merits of the technique.
Technical Paper

Cam-Phasing Optimization Using Artificial Neural Networks as Surrogate Models-Maximizing Torque Output

2005-10-24
2005-01-3757
Variable Valve Actuation (VVA) technology provides high potential in achieving high performance, low fuel consumption and pollutant reduction. However, more degrees of freedom impose a big challenge for engine characterization and calibration. In this study, a simulation based approach and optimization framework is proposed to optimize the setpoints of multiple independent control variables. Since solving an optimization problem typically requires hundreds of function evaluations, a direct use of the high-fidelity simulation tool leads to the unbearably long computational time. Hence, the Artificial Neural Networks (ANN) are trained with high-fidelity simulation results and used as surrogate models, representing engine's response to different control variable combinations with greatly reduced computational time. To demonstrate the proposed methodology, the cam-phasing strategy at Wide Open Throttle (WOT) is optimized for a dual-independent Variable Valve Timing (VVT) engine.
Technical Paper

Servo Guns for Resistance Spot Welding

2000-03-06
2000-01-1289
Resistance spot welding (RWS) guns driven by servomotors instead of pneumatic cylinders are called servo guns. They bring many new features to RWS process. In this study, the influences of servo guns on RSW process are systematically investigated based on comparative experiments. In addition, the costs of servo guns are also analyzed. The long-term applications of servo guns will be cost effective due to their technical features and savings on pneumatic systems although the acquisition cost of servo guns is high. Therefore, servo gun is an excellent alternative RSW machine for sheet metal assembly.
X