Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

Cycle-Resolved Measurements of Pre-Combustion Fuel Concentration Near the Spark Plug in a Gasoline SI Engine

1998-02-23
981053
An infrared fiber optic instrumented spark plug probe has been used to measure the fuel concentration in the vicinity of the spark gap in a port injected gasoline fueled SI engine. The probe measured the fuel concentration spatially averaged over a distance of 6.3 mm near the spark plug for consecutive firing cycles. The crank angle resolution of the measurements was 2.5 degrees, for a temporal resolution of between 0.9 and 0.3 ms depending on the engine speed. Quantitative measurements of the fuel concentration in the pre-ignition regions of the engine cycle were obtained. Qualitative results are reported for unburned hydrocarbons in the post-combustion regions. The measurements were made in a single cylinder research engine over a range of speed, load, and stoichiometric conditions. Strong mixture inhomogeneities were measured during the intake stroke and the inhomogeneities decreased through the compression stroke.
Technical Paper

Development of the Texas Drayage Truck Cycle and Its Use to Determine the Effects of Low Rolling Resistance Tires on the NOX Emissions and Fuel Economy

2009-04-20
2009-01-0943
Trucks operating in inter-modal (drayage) operation in and around port and rail terminals, are responsible for a large proportion of the emissions of NOX, which are problematic for the air quality of the Houston and Dallas/Ft. Worth metro areas. A standard test cycle, called the Texas Dray Truck Cycle, was developed to represent the operation of heavy-duty diesel trucks in dray operations. The test cycle reflects the substantial time spent at idle (~45%) and the high intensity of the on-road portions. This test cycle was then used in the SAE J1321 test protocol to evaluate the effect on fuel consumption and NOX emissions of retrofitting dray trucks with light-weight, low-rolling resistance wide-single tires. In on-track testing, a reduction in fuel consumption of 8.7% was seen, and NOX emissions were reduced by 3.8% with the wide single tires compared to the conventional tires.
Technical Paper

Effects of Air and Road Surface Temperature on Tire Pavement Noise on an ISO 10844 Surface

2001-04-30
2001-01-1598
Sound pressure level (SPL) measurements of vehicle coast-by runs of a passenger vehicle were performed across a range of temperatures. A controlled test track was used for the runs with six different sets of tires. A small but significant reduction of noise level with positive temperature increases was observed for some but not all tires. The reduction was evident in two of the tires at 53 kph and five of the tires at 80 kph. The SPL of the other tires showed little or no sensitivity to temperature. Frequency analysis of the tire noise showed that noise content above 1000 Hz is most affected by temperature change and noise in the range of 1200 to 2000 Hz is particularly sensitive to temperature changes. However, differences in SPL due to speed and tire type were much greater than that due to temperature
Technical Paper

Performance of Anti-Lock Braking System Equipped Passenger Vehicles - Part I: Braking as a Function of Brake Pedal Application Force

2002-03-04
2002-01-0304
This paper presents the results of original research conducted to evaluate the braking characteristics of passenger vehicles equipped with anti-lock braking systems (ABS) as a function of brake-pedal application force. The conditions studied in this paper are for braking on a dry, level roadway without any steering input. The objective of the paper is to study the effect of brake-pedal application force on the braking systems of common vehicles currently in-use. Comparisons are made between ABS and locked-wheel braking for each vehicle. The subject of this paper is part of the general topic of passenger vehicle dynamics and stability. Knowledge of how a vehicle performs under a variety of braking conditions is important for a variety of applications such as 1) intelligent vehicle highway systems, 2) vehicle stability and control, 3) vehicle dynamics, and 4) accident reconstruction.
Technical Paper

Performance of anti-lock Braking System Equipped Passenger Vehicles - Part II: Braking as a Function of Initial Vehicle Speed in Braking Maneuver

2002-03-04
2002-01-0307
This paper presents the results of original research conducted to evaluate the braking characteristics of passenger vehicles equipped with anti-lock braking systems (ABS) as a function of vehicle speed at the beginning of a braking maneuver. The conditions studied in this paper are for braking on a dry, level roadway without any steering input. The objective of the paper is to study the effect of vehicle speed on the braking systems of common vehicles currently in-use. Comparisons are made between ABS and locked-wheel braking for each vehicle. The subject of this paper is part of the general topic of passenger vehicle dynamics and stability. Knowledge of how a vehicle performs under a variety of braking conditions is important for a variety of applications such as 1) intelligent vehicle highway systems, 2) vehicle stability and control, 3) vehicle dynamics, and 4) accident reconstruction.
Technical Paper

Camshaft Roller Chain Drive with Reduced Meshing Impact Noise Levels

2003-05-05
2003-01-1666
The work presented in this paper outlines the design and development of a new roller chain sprocket tooth form for engine camshaft drives in an effort to reduce the noise levels related to chain-sprocket meshing. The crankshaft sprocket also incorporated inclined plane Nitrile damper rings to further reduce meshing impact noise levels. Previous experimental studies have shown that roller impact during meshing is a dominant noise source in roller chain drives. Noise evaluations were conducted for several camshaft drive configurations on a 4-cylinder DOHC automotive engine in a semi-anechoic dynamometer facility. The tests included measurements of meshing frequency sound power levels and overall sound power levels. This firing engine noise and vibration experiment was done to compare the noise levels of the asymmetrical sprocket tooth profile to that of a standard ISO sprocket tooth profile.
Technical Paper

Development and Validation of an Optimized Emergency Lane-Change Trajectory

1998-02-23
980231
In this paper, functional analysis is employed to develop an ideal path of a vehicle undergoing a limit lane-change maneuver. Inputs to the problem are the lane width, tire-road coefficient of friction and either vehicle velocity or total longitudinal lane-change distance. Vehicle velocity is assumed to be constant. The problem is formulated using the calculus of variations. The solution technique relies on elliptic functions to achieve a closed-form solution. The synthesis of an ideal lane-change trajectory is treated as a minimal-energy-curve optimization problem with prescribed continuity and boundary conditions. The concept of critical speed is employed to limit the maximum curvature of any specified lane-change, thereby ensuring that the synthesized trajectory function describes a path that can be traversed under realistic road conditions. The analytical solution is confirmed by comparison to a numerical solution and a validated 8 degree-of-freedom vehicle model simulation.
Technical Paper

Formulas for Estimating Vehicle Critical Speed From Yaw Marks - A Review

1997-02-24
971147
This paper provides an exposition of the basic and some refined inertial critical speed estimation formulas. A literature review of existing inertial formulas for estimating critical cornering speed were identified for the ultimate purpose of developing a useful, compact, and more accurate speed estimation formula. Background information is presented covering the general definitions and utility of critical speed formulas. First, as a point of reference, the basic critical speed formulas are derived. Included is a list of the key assumptions on which the basic formulas are based. It is shown that the basic formulas are founded on the fundamental principles of physics and engineering mechanics; namely, Newton's Second Law and centrifugal force.
Technical Paper

Vehicle Critical Speed Formula - Values for the Coefficient of Friction - A Review

1997-02-24
971148
This paper covers briefly the theory of tire-road friction, coefficient of friction measurement techniques, and the vagaries of tire-road friction as they relate to critical speed estimation. A literature review of tire-road friction studies was conducted to identify the primary factors effecting the tire-road coefficient of friction. Background information is presented covering general definitions and the connection between the basic critical speed formulas and the coefficient of friction. The primary components of tire-road friction, adhesion and hysteresis, are discussed along with minor effects such as tearing, wear, waves, and roll formation. Common coefficient of friction field measuring techniques are described, including the skid-to-stop test and drag sled. Influential factors such as tire characteristics, tire inflation pressure, road conditions, and dynamic factors are reviewed.
Technical Paper

An Energy Efficient Electromagnetic Active Suspension System

1997-02-24
970385
The technology thrust to develop an effective electromagnetic actuator for application in an active suspension system has precipitated a fresh look at the active control schemes in an effort to reduce the required force levels of the actuator. The resulting “near constant force” control algorithm is described and its ability to greatly reduce vehicle sprung mass motion is documented through simulation and single wheel station laboratory test stand results. The vehicle power and energy requirements associated with this unwanted vehicle vertical are analyzed and comparisons between the corresponding passive and active systems are presented. The success of the active system leads naturally to the conclusion that a passive suspension equipped vehicle will become power limited at a much lower speed than will this active system when traversing severe cross-country terrain.
Technical Paper

Further Development of an On-Board Distillation System for Generating a Highly Volatile Cold-Start Fuel

2005-04-11
2005-01-0233
The On-Board Distillation System (OBDS) extracts, from gasoline, a highly volatile crank fuel that enables simultaneous reduction of start-up fuel enrichment and significant ignition timing retard during cold-starting. In a previous paper we reported reductions in catalyst light-off time of >50% and THC emissions reductions >50% over Phase I of the FTP drive cycle. The research presented herein is a further development of the OBDS concept. For this work, OBDS was improved to yield higher-quality start-up fuel. The PCM calibration was changed as well, in order to improve the response to intake manifold pressure transients. The test vehicle was tested over the 3-phase FTP, with exhaust gases speciated to determine NMOG and exhaust toxics emissions. Also, the effectiveness of OBDS at generating a suitable starting fuel from a high driveability index test gasoline was evaluated.
Technical Paper

Effects of Fuel Parameters on FTP Emissions of a 1998 Toyota with a Direct Injection Spark Ignition Engine

2000-06-19
2000-01-1907
The effects of fuel properties on the emissions of a production vehicle with a gasoline direct injection engine operating over the Federal Test Procedure (FTP) cycle were investigated. The vehicle used was a 1998 Toyota Corona passenger car with a direct injection spark ignition (DISI) engine. Engine-out and tailpipe FTP emissions for six fuels and a California Phase 2 RFG reference fuel are presented. Four of the test fuels were blended from refinery components to meet specified distillation profiles. The remaining test fuels were iso-octane and toluene, an iso-alkane and an aromatic with essentially the same boiling point (at atmospheric pressure) that is near the T50 point for the blended fuels. Statistically significant effects, at the 95% confidence level, of the fuels on tailpipe emissions were found. Correlations were sought between the properties of the five blends and the Emissions Indices for engine-out hydrocarbons and NOx and for tailpipe particulates.
Technical Paper

Stretch Forming of Rectangular Aluminum Tubes for Automotive Applications

2000-10-03
2000-01-2711
Aluminum auto parts are commonly cold formed by stretch forming thin aluminum sections. The forming must be designed so that the part has accurate shape, is free of wrinkles and has minimal distortion of the cross section. The problem has been studied through a combination of experiment and analysis. Rectangular tubes have been formed under controlled conditions in a custom bend-stretch-pressure forming facility. Dedicated nonlinear models of the process have been developed. It is shown that the cross sectional distortion and springback can be estimated by a computationally efficient 2-D model. The efficiency of the model enables quick parametric study of the process from which optimal values of tension and pressure as well as their histories can be established.
Technical Paper

Intelligent Estimation of System Parameters for Active Vehicle Suspension Control

1999-03-01
1999-01-0729
Active control of vehicle suspension systems typically relies on linear, time-invariant, lumped-parameter dynamic models. While these models are convenient, nominally accurate, and tractable due to the abundance of linear control techniques, they neglect potentially significant nonlinearities and time-varying dynamics present in real suspension systems. One approach to improving the effectiveness of such linear control applications is to introduce time and spatially-dependent coefficients, making the model adaptable to parameter variations and unmodeled dynamics. In this paper, the authors demonstrate an intelligent parameter estimation approach, using structured artificial neural networks, to continually adapt the lumped parameters of a linear, quarter-car suspension model. Results are presented for simulated and experimental quarter-vehicle suspension system data, and clearly demonstrate the viability of this approach.
Technical Paper

Performance of Anti-Lock Braking System Equipped Passenger Vehicles - Part III: Braking as a Function of Tire Inflation Pressure

2002-03-04
2002-01-0306
This paper presents the results of original research conducted to evaluate the braking characteristics of passenger vehicles equipped with anti-lock braking systems (ABS) as a function of tire inflation pressure. The conditions studied in this paper are for braking on a dry, level roadway without any steering input. The objective of the paper is to study the effect of tire inflation pressure on the braking systems of common vehicles currently in-use. Comparisons are made between ABS and locked-wheel braking for each vehicle. The subject of this paper is part of the general topic of passenger vehicle dynamics and stability. Knowledge of how a vehicle performs under a variety of braking conditions is important for a variety of applications such as 1) intelligent vehicle highway systems, 2) vehicle stability and control, 3) vehicle dynamics, and 4) accident reconstruction.
X