Refine Your Search

Topic

Search Results

Technical Paper

The System Identification for the Hydrostatic Drive System of Secondary Regulation Using Neural Networks

1996-10-01
962231
In this paper, the system identification theory and method using dynamic neural networks are presented, the multilayer feedforward networks employed, the backpropagation with adaptive learning rate algorithms proposed. Finally the comparision of network output with that of the hydrostatic drive system of secondary regulation is given, and output error, sum-squared error et al, or the results that embody the effect of system identification given sine input to it are provided.
Technical Paper

Research on Vehicular Hydrostatic Energy Storage Transmission and Its Control System

1997-11-17
973179
Although Hydrostatic Transmission System (HTS) had been used in many places, such as machine tools, agriculture machinery, construction machinery, and vehicles, it had not been used in good performance. Twenty years ago many people began to design new hydrostatic transmission with higher efficiency. Hydrostatic Energy Storage Transmission System (HESTS) is one of new hydrostatic transmission system with higher efficiency. HESTS is more fit for being used in vehicle that is always running in undulating ground or starting and braking frequently. Construction of vehicular HESTS was analyzed, mathematical model of vehicular HESTS was established. The needed control strategies of vehicular HESTS were analyzed because there are many variables would be controlled in the new transmission system.
Technical Paper

Mechanism Study on Time-Varying Characteristics of Frictional Squeal in Pin-on-Disc System

2014-09-28
2014-01-2517
Disc brake squeal has always been a great challenge to the automotive industry. Based on the pin-on-disc system, a series of frictional squeal bench tests are carried out, which show significant time-varying characteristics on occurrence, sound pressure and frequency of frictional squeal. To investigate the generation mechanism of time-varying characteristics of frictional squeal, a four-degree-of-freedom (4DOF) lumped parameter model considering the time-varying tangential contact stiffness, the normal contact stiffness and the friction coefficient is established in this paper. Through both the system stability analysis and the transient response analysis, the time-varying frictional squeal is predicted successfully, and the generation mechanism and the key impact factors are also investigated in depth.
Technical Paper

Analysis and Design of Dual-Motor Electro-Hydraulic Brake System

2014-09-28
2014-01-2532
In this paper, by analyzing multiple electro-hydraulic brake system schemes in detail, the idea of dual-motor electro-hydraulic brake system is proposed. As a new solution, the dual-motor electro-hydraulic brake system can actively simulate pedal feel, make the most of pedal power (from the driver), and reduce the maximum power output of each active power source remarkably, which is a distinctive innovation compared to most current electro-hydraulic brake systems. Following the proposed concept, a general research thought and method is conceived, and then a dual-motor electro-hydraulic brake system is designed. Finally, the simulation model is set up in AMESim software and its feasibility is simulated and verified.
Technical Paper

Cycle Resolved Combustion and Pre-Ignition Diagnostic Employing Ion Current in a PFI Boosted SI Engine

2015-04-14
2015-01-0881
An ion current sensor is employed in a 4 cylinder production SI engine for combustion diagnosis during combustion process, knock, and low speed pre-ignition (LSPI) detection. The results show that the ion current peak value and ion current peak phase have strong correlation with the cylinder pressure and pressure peak phase respectively. The COV of ion current integral value is greater than the COV of IMEP at the same operating condition. Results show that the ion current signal is sensitive to different lambdas. Using ion current signal, the knock in any given cylinder can be detected. Importantly, the ion sensor successfully detected the low speed pre-ignition (LSPI) about more than 20 °CA before spark ignition.
Technical Paper

Power Matching and Control Strategy of Plug-in Series Hybrid Electric Car

2010-10-25
2010-01-2195
In this paper, based on the plug-in series hybrid electric vehicle development project, the vehicle technology solutions and the match of power system parameters were analyzed. The vehicle control strategies were identified and optimized according to plug-in hybrid vehicle features. The plug-in series hybrid, rule-based logic threshold switching control strategy, charge depleting (CD) mode and charge-sustaining (CS) mode are chosen according to the key factors, such as the environment, performance requirements, technical requirements and cost. And then the structure and model of vehicle control strategy were established to carry out vehicle energy management and power system control. The parameter selection, electric drive system matching, energy storage system design based on the requirement of vehicle performance, system architecture and control strategy are presented.
Technical Paper

Simulations of Key Design Parameters and Performance Optimization for a Free-piston Engine

2010-04-12
2010-01-1105
To develop a free-piston engine-alternator integrative power system for Hybrid Electric Vehicles, the key design parameters, such as reciprocating mass of the piston assembly, compression ratio, the ignition timing, the engine fuel consumption rate and power output, are studied based on the simulation. The results show that, the system simulation model of the free piston engine can predict the in-cylinder pressure vs. the piston's displacement being accurate enough as the test results from reported reference. The model can be employed to optimize the design parameters and to predict the fuel economy and power output. It provides the methods and bases for the free piston engine design and predicting the main performance parameters' values.
Technical Paper

Optimization of Control Strategy for Engine Start-stop in a Plug-in Series Hybrid Electric Vehicle

2010-10-25
2010-01-2214
Plug-in hybrid electric vehicles (PHEVs) provide significantly improvement in fuel economy over conventional vehicles as well as reductions in greenhouse gas and petroleum. Numerous recent reports regarding control strategy, power train configuration, driving pattern, all electric range (AER) and their effects on fuel consumption and electric energy consumption of PHEVs are reported. Meanwhile, the control strategy for engine start-stop and mileage between recharging events from the electricity grid also has an important influence on the petroleum displacement potential of PHEVs, but few reports are published. In this paper, a detailed simulation model is set up for a plug-in series hybrid electric vehicle (PSHEV) employing the AVL CRUISE. The model was employed to predict the AER of the baseline PSHEV using rule-based logical threshold switching control strategy.
Technical Paper

A Study on the Factors Affecting Heated Wall Impinging Characteristics of SCR Spray

2011-04-12
2011-01-1311
Many studies show that under diesel engine operating conditions, SCR reductant sprays will impinge on the wall of exhaust pipes. In order to understand this impinging process of SCR reductant spray, and to analyze what factors affect it, a test bench was set up by means of high speed video camera. At atmospheric pressure, SCR spray was injected on a heated metal wall, the impacts of wall temperature, injection pressure, injection height and angle on developing characteristics of SCR reductant spray after impinging on the heated wall have been researched and analyzed. The results show that the heated wall temperature has a great impact on the spray developing process, when wall temperature is lower than 405K, after water evaporated the crystallized urea will remain on the wall to block exhaust pipes. When wall temperature is higher, the atomization and evaporation of SCR reductant spray will be better, and the hydrolysis process of urea will be faster.
Technical Paper

Spray Characteristics and Wall-impingement Process with Different Piston Tops for the Multi-hole Injector of DISI Gasoline Engines

2011-04-12
2011-01-1222
Spray characteristics and spray wall-impingement events are the key factors for the direct injection spark ignition (DISI) engines, affecting fuel/air mixture preparation and its combustion process. Thus, the spray characteristics of a multi-hole injector for DISI engines, such as spray tip penetration and spray cone angle were investigated in an optical chamber employing the high-speed shadow photography. Furthermore, the effects of the injection pressure, ambient pressure and piston top shape on the impinging spray development were studied in the optical chamber, when the impinging distance is 26.1 mm, corresponding to about 60 CAD ATDC. In addition, the SMD and wall film thickness of the spray impinging on the piston top were studied by means of CFD technique. The results showed that the ambient pressure had the greater effect on the changes of the spray penetration and spray cone angle than the injection pressure.
Technical Paper

Nucleation Mode Particle Emissions from a Diesel Engine with Biodiesel and Petroleum Diesel Fuels

2010-04-12
2010-01-0787
Effects of biodiesel fuel on nucleation mode particles were studied on a direct injection, high pressure common-rail diesel engine for passenger cars. Particle number and size distribution of the diesel engine were obtained using an Engine Exhaust Particle Sizer (EEPS). The base petroleum diesel, three different blend ratios of petroleum diesel/biodiesel (10%, 20% and 50% v/v biodiesel blend ratios), and the pure biodiesel fuel (obtained and converted from Jatropha seed in China) (B0, B10, B20, B50 and B100 fuels) were tested without engine modification. Experiments were performed on a series of engine operating conditions. The particle number size distribution of the engine shows unimodal or bimodal log-normal distribution. With the biodiesel blend ratios increasing, the number of nucleation mode particles increases at all test engine operating conditions and accumulation mode particles decreases at most engine operating conditions.
Technical Paper

Whole Field Bonded Steel Tensile Test Using Digital Image Correlation System

2010-04-12
2010-01-0960
Adhesive bonding has many applications in the automotive industry. The single-lapped bonded joint is the most typically used among various bonding types. This paper presents experimental research for determining the strain field of the single-lapped joint under tensile loading. The materials for the joint are epoxy-based structural adhesive and low-carbon electrolytic zinc steel plate. In the study, a DIC (digital image correlation) system was adopted to measure the strain distribution of the bonded joint during a tensile test. The bonded steel coupons in the tensile test were prepared according to the ASTM standard. During the measurement, images of the coupon joint were taken before and after the deformation process. Then the DIC system measured the strain of bonded joint by comparing two consecutive images. The measured data from the DIC was compared to data taken simultaneously from a traditional extensometer.
Technical Paper

Damage Identification of Rear Axle Under Experimental Condition from Curvature Mode Change

2010-04-12
2010-01-0930
In this paper the approach of using modal parameters to detect and locate damage of automobile rear axle under experimental condition is explained. This method uses the changes in the curvature mode of the structure as the damage identification indicator to detect and locate damage. The curvature mode and the damage identification indicator are explained, the process of the identification is introduced. The method is demonstrated with a FEM (Finite Element Method) analysis on a plate under different damage conditions. And the indicator is improved with a weighting function. Then EMA (Experimental Modal Analysis) is conducted on a damaged and an undamaged rear axle of a vehicle to get the modal parameters for the damage identification indicator which later identifies and locates the damages, thus validating the introduced method.
Technical Paper

Stratified Mixture Formation and Combustion Process for Wall-guided Stratified-charge DISI Engines with Different Piston Bowls by Simulation

2010-04-12
2010-01-0595
This paper presents the simulation of in-cylinder stratified mixture formation, spray motion, combustion and emissions in a four-stroke and four valves direct injection spark ignition (DISI) engine with a pent-roof combustion chamber by the computational fluid dynamics (CFD) code. The Extended Coherent Flame Combustion Model (ECFM), implemented in the AVL-Fire codes, was employed. The key parameters of spray characteristics related to computing settings, such as skew angle, cone angle and flow per pulse width with experimental measurements were compared. The numerical analysis is mainly focused on how the tumble flow ratio and geometry of piston bowls affect the motion of charge/spray in-cylinder, the formation of stratified mixture and the combustion and emissions (NO and CO₂) for the wall-guided stratified-charge spark-ignition DISI engine.
Technical Paper

Theoretical Modeling and FEM Analysis of the Thermo-mechanical Dynamics of Ventilated Disc Brakes

2010-04-12
2010-01-0075
Prediction and analysis of the thermo-mechanical coupling behavior in friction braking system is very important for the design and application of vehicle brakes, such as brake judder, brake squeal, brake wear, brake cracks, brake fade. This paper aims to establish a macro-structural model of the thermo-mechanical dynamics of the ventilated disc brake with asymmetrical outer and inner disc thickness, taking into account the friction-velocity curve of the disc pad couple acquired by testing. On the basis of finite elements analysis of the model, the predictions of the thermo-mechanical responses of the brake disc are presented, including disc transient temperature field and normal stress in radial, circular and axial directions, disc lateral deformation and disc thickness variation. Numerical predictions of the disc surface temperature and later distortion are compared with experimental measurements obtained by thermocouples and non-contact displacement sensors.
Technical Paper

Nonlinear Estimation of Vehicle Sideslip Angle Based on Adaptive Extended Kalman Filter

2010-04-12
2010-01-0117
An adaptive sideslip angle observer based on discrete extended Kalman filter (DEKF) is proposed in this paper and tire-road friction adaptation is also considered. The single track vehicle model with nonlinear tire characteristics is adopted. The tire parameters can be easily obtained through road test data without using special test rig. Afterwards, this model is discretized and the maximum value of tire-road friction is modeled as the third state variable. Through the measurement of vehicle lateral acceleration and yaw rate, the tire-road adhesion coefficient can be timely updated. Simulations with experimental data from road test and driving simulator have confirmed that DEKF has very high accuracy. The convergent speed of DEKF relies on the magnitude of lateral excitation.
Technical Paper

Research of Eliminating Method of Undesired Shifting for Vehicle with Dual Clutch Transmission

2013-04-08
2013-01-0485
The undesired shifting phenomenon(USP) occurs easily under the braking or climbing conditions etc., and its impact is the discomfort to the passengers or cause of vehicle's state contrary to the driver's intention, meanwhile, the wear of the clutch and synchronizer is increased, so their lifetime are greatly shortened. To the vehicle with dual clutch transmission (DCT), undesired shifting phenomenon will lead to frequent and unnecessary actuation of synchronizer for the use of pre-engagement synchronizer in the shifting control; therefore, its occurrence should be eliminated as far as possible. In this paper, the process of the undesired shifting of the vehicle with DCT is elaborated, then the generating cause of USP is described based on directed graph.
Technical Paper

Constitutive Model of Ti40 Alloy Sheet Based on DIC Measurement

2013-04-08
2013-01-1427
Based on the experimental data of true stress-strain measured by DIC (Digital Image Correlation) combined with the data from a tensile test machine, the methodology for establishing a constitutive model for Ti40 alloy sheet is presented in this paper. The procedure is demonstrated by building the constitutive relationship for Ti40 alloy sheet. As the verification of the constitutive relationship, a force-displacement diagram is simulated by FEA (Finite Element Analysis). A comparison of force-displacement diagram obtained separately by FEA and the tensile test machine is made and the result shows that the method for establishing the constitutive relationship for Ti40 alloy sheet presented in this paper are reliable and considerately accurate.
Technical Paper

A New Method for Determination of Forming Limit Diagram Based on Digital Image Correlation

2013-04-08
2013-01-1421
In this paper, a new method for determining the forming limit diagram (FLD) of thin sheet metals, called DIC-Grid method, is proposed based on digital image correlation (DIC) technique. It's assumed that there exists one virtual grid with an initial diameter of 2.5mm, which is usually the same dimension as the grid in traditional circular grid analysis, close to the crack of specimen, and the limit strain point on FLD is determined by the deformation of this virtual grid. The DIC-Grid method has been compared with traditional circular grid analysis and the standard ISO/FDIS 12004-2 in Nakajima tests. The results show that the forming limit strains obtained by the newly proposed method are more stable and precise. Furthermore, DIC-Grid method can avoid the measurement error which exists in the circular grid analysis. Meanwhile, it overcomes the shortcomings of time-consuming data processing and non-applicable for unrealistic strain distribution in the method of ISO standard.
Technical Paper

A Novel Closed Loop Control based on Ionization Current in Combustion Cycle at Cold Start in a GDI Engine

2012-04-16
2012-01-1339
As the invalidation of the oxygen sensor in the initial cycles at cold start, the engine can not operate based on the closed loop control based on oxygen sensor. And it may result in the misfire events and higher hydrocarbon (HC) emissions during this period. To solve this problem, a novel closed loop control based on ionization current in combustion cycle is proposed. The in-cylinder combustion quality is monitored by means of the ion current detection technique; meanwhile, if the misfire event is detected in the combustion cycle, the spark re-ignition is made in the current combustion cycle. In addition, to optimize the combustion and reduce HC emissions during cold start, the fuel injection quantity and ignition timing in the next cycle are adjusted based on the current ion current signal.
X