Refine Your Search

Topic

Search Results

Journal Article

Adhesion Control Method Based on Fuzzy Logic Control for Four-Wheel Driven Electric Vehicle

2010-04-12
2010-01-0109
The adhesion control is the basic technology of active safety for the four-wheel driven EV. In this paper, a novel adhesion control method based on fuzzy logic control is proposed. The control system can maximize the adhesion force without road condition information and vehicle speed signal. Also, the regulation torque to prevent wheel slip is smooth and the vehicle driving comfort is greatly improved. For implementation, only the rotating speed of the driving wheel and the motor driving torque signals are needed, while the derived information of the wheel acceleration and the skid status are used. The simulation and road test results have shown that the adhesion control method is effective for preventing slip and lock on the slippery road condition.
Technical Paper

Experimental Performance Analysis of Multi-Channel Active Control System for Road Noise in Vehicles Using FXLMS Algorithm

2020-04-14
2020-01-1277
It’s significant to analyze the Experimental performance of active control system for road noise. In this paper, a 2-channel active control system of vehicle road noise based on FXLMS algorithm is established. The complexity of Filtered-x Least Mean Square algorithm (FXLMS) is analyzed. The bench test and road test are carried out to test and analyze the performance of the control system. Firstly, the general mathematic model of the multi-channel active control system based on FXLMS algorithm is established. The computational complexity of the algorithm is analyzed. Secondly, a hardware-in-the-loop (HIL) test bench based on multi-channel FXLMS algorithm and a measurement system based on DASP are set up, to measure the noise reduction performance of active noise control system under various working conditions. Finally, the bench test and the road test are carried out and the results are analyzed.
Technical Paper

A Study of Crevice HC Mechanism Based on the Transient HC Test Data and the Double Zone Combustion Model

2008-06-23
2008-01-1652
The effectiveness of after-treatment systems depends on the exhaust gas temperature, which is low during cold-start. As a result, Euro III, Euro IV and FTP75 require that the emissions tests include exhaust from the beginning of cold start. It is proved that 50%∼80% of HC and CO emissions are emitted during the cold start and the amount of unburned fuel from the crevices during starting is much higher than that under warmed engine conditions. The piston crevices is the most part of combustion chamber crevices, and results of mathematical simulations show that the piston crevice contribution to HC emissions is expected to increase during cold engine operation. Based on the transient HC test data and the double zone combustion model, this paper presents the study of the crevice HC Mechanism of the first firing cycle at cold start on an LPG SI Engine. A fast-response flame ionization detector (FFID) was employed to measure transient HC emissions of the first firing cycle.
Technical Paper

Elementary Investigation into Road Simulation Experiment of Powertrain and Components of Fuel Cell Passenger Car

2008-06-23
2008-01-1585
It is very important to investigate how road irregularity excitation will affect the durability, reliability, and performance degradation of fuel cell vehicle powertrain and its key components, including the electric motor, power control unit, power battery package and fuel cell engine system. There are very few published literatures in this research area. In this paper, an elementary but integrated experimental work is described, including the real road load sample on proving ground, road load reproduction on vibration test rig, total vehicle road simulation test and key components vibration tests. Remote parameter control technology is adopted to reproduce the real road load on road simulator and six-degree-of-freedom vibration table, which is used respectively for total vehicle and components vibration tests.
Technical Paper

Investigation of Radiation and Conjugate Heat Transfers for Vehicle Underbody

2008-06-23
2008-01-1819
A computational study was conducted in order to characterize the heat transfers in a sedan vehicle underbody and the exhaust system. A steady-state analysis with consideration for both the radiation and conjugate heat transfers was undertaken using the High-Reynolds formulation of the k-epsilon turbulence model with standard wall function and the DO model for the radiation heat transfer. All three mechanisms of heat transfer, i.e., convection, conduction, and radiation, were included in the analysis. The convective heat transfer due to turbulent fluid motion was modeled with the assumption of constant turbulent Prandtl number; and heat conduction was solved directly for both fluid and solid.
Technical Paper

The Study on Fatigue Test of Cab Assembly Based on 4-Channel Road Simulation Bench

2017-03-28
2017-01-0328
The multi-body dynamics simulation and physical iteration were carried out based on the 4-channel road simulation bench, the solution of fatigue test bench which was suitable for cab with frame and suspension was designed. Large load and displacement above the suspension can be loaded on the test bench, and the same weak position of cab exposed on the road test can be assessed well on the fatigue test bench. The effectiveness of the bench test solution was verified though comparative study. And it has important reference for the same type of cab assembly with suspension in the fatigue bench test. According to the durability specifications of cab assembly, a multi-body dynamics model with a satisfactory accuracy was built. And the fixture check and virtual iteration analysis were used to verify the effectiveness of the solution. According to the road load signal analysis and multi-body dynamics analysis results, the test bench with linear guide and spherical joint was built.
Technical Paper

Correlation Analysis of Interior and Exterior Wind Noise Sources of a Production Car Using Beamforming Techniques

2017-03-28
2017-01-0449
Beamforming techniques are widely used today in aeroacoustic wind tunnels to identify wind noise sources generated by interaction between incoming flow and the test object. In this study, a planar spiral microphone array with 120 channels was set out-of-flow at 1:1 aeroacoustic wind tunnel of Shanghai Automotive Wind Tunnel Center (SAWTC) to test exterior wind noise sources of a production car. Simultaneously, 2 reference microphones were set in vehicle interior to record potential sound source signal near the left side view mirror triangle and the signal of driver’s ear position synchronously. In addition, a spherical array with 48 channels was set inside the vehicle to identify interior noise sources synchronously as well. With different correlation methods and an advanced algorithm CLEAN-SC, the ranking of contributions of vehicle exterior wind noise sources to interested interior noise locations was accomplished.
Technical Paper

Effect of Road-Induced Vibration on Gas-Tightness of Vehicular Fuel Cell Stack

2016-04-05
2016-01-1186
The vehicular fuel cell stack is unavoidably impacted by the vibration in the real-world usage due to the road unevenness. However, effects of vibration on stacks have yet to be completely understood. In this work, the mechanical integrity and gas-tightness of the stack were investigated through a strengthen road vibration test with a duration of 200 h. The excitation signals applied in the vibration test were simulated by the acceleration of the stack, which were previously measured in a vehicle vibration test. The load signals of the vehicle vibration test were iterated through a road simulator from vehicle acceleration signals which were originally sampled in the proving ground. Frequency sweep test was conducted before and after the vibration test. During the vibration test, mechanical structure inspection and pressure maintaining test of the stack were conducted at regular intervals.
Technical Paper

An Integrated-Electro-Hydraulic Brake System for Active Safety

2016-04-05
2016-01-1640
An integrated-electro-hydraulic brake system (I-EHB) is presented to fulfill the requirements of active safety. Because I-EHB can control the brake pressure accurately and fast. Furthermore I-EHB is a decoupled system, so it could make the maximum regenerative braking while offers the same brake pedal feeling and also good for ADAS and unmanned driving application. Based on the analysis of current electrohydraulic brake systems, regulation requirements and the requirements for brake system, the operating mode requirements of I-EHB are formed. Furthermore, system topological structure and a conceptual design are proposed. After the selection of key components, the parameter design is accomplished by modeling the system. According to the above-mentioned design method, an I-EHB prototype and test rig is made. Through the test rig, characteristics of the system are tested. Results show that this I-EHB system responded rapidly.
Technical Paper

Study on Correlation between After-Treatment Performance and Running Conditions, Exhaust Parameters of Heavy-Duty Diesel Vehicle

2018-04-03
2018-01-0338
The increasingly stringent emission regulations have mandated the use of CCRT (catalyzed continuously regeneration trap) made by upstream DOC (diesel oxidation catalyst) and downstream CDPF (catalyzed diesel particulate filter) for heavy-duty diesel vehicles, which is proved to be the only way that can efficiently control the gaseous and particulate emissions. The performance of after-treatment is greatly influenced by the running conditions of the diesel vehicle and its exhaust parameters, so this paper intended to use grey relational analysis to study the correlation between running conditions (velocity, acceleration, VSP (vehicle specific power)), exhaust parameters (exhaust flow rate, DOC inlet temperature, concentrations of CO, THC, O2 and NOX) and the performance of DOC and CCRT based on chassis dynamometer test. Results showed that the effect of DOC on CO and THC is mainly affected by exhaust flow rate, exhaust temperature and THC concentration.
Technical Paper

Fault-Tolerant Ability Testing for Automotive Ethernet

2018-04-03
2018-01-0755
With the introduction of BroadR-Reach and time-sensitive networking (TSN), Ethernet has become an option for in-vehicle networks (IVNs). Although it has been used in the IT field for decades, it is a new technology for automotive, and thus requires extensive testing. Current test solutions usually target specifications rather than the in-vehicle environment, which means that some properties are still uncertain for in-vehicle usage (e.g., fault tolerance for shorted or open wires). However, these characteristics must be cleared before applying Ethernet in IVNs, because of stringent vehicular safety requirements. Because CAN is usually used for these environments, automotive Ethernet is expected to have the same or better level of fault tolerance. Both CAN and BroadR-Reach use a single pair of twisted wires for physical media; thus, the traditional fault-tolerance test method can be applied for automotive Ethernet.
Technical Paper

Application of the Vortex Identification Algorithms in the Study of the Shear Layer in A 3/4 Open Jet Automotive Wind Tunnel

2018-04-03
2018-01-0746
By means of particle image velocimetry(PIV) measurements, this paper uses vortex identification algorithms to find and analyze the coherent structures in the shear layer region of a 1:15 scaled 3/4 open jet automotive wind tunnel with a high Reynolds number(about 106), referring to SAWTC’s AAWT. The proper orthogonal decomposition(POD) is used to process the PIV experimental data to reconstruct the velocity fields. Based on the vortex identification functions, the locations of the center, the rotation direction and the radius of vortex can be computed. Furthermore, this paper uses the statistical method to study the regularities of distribution of these vortexes in a two-dimensional plane, and identify the vortex pairing process in the shear layer region. This paper also chooses different vortex identification algorithms to find the most accurate and suitable algorithms.
Technical Paper

Laboratory Investigation on Emission Characteristics of a Diesel Car Fuelled with Biodiesel Blends

2012-04-16
2012-01-1063
Based on pure diesel, pure biodiesel, and two biodiesel blends at volumetric mixture ratio of 10% and 20%, NEDC emission tests were carried out on a Euro 3-compliant diesel car. Results showed that pure biodiesel and biodiesel blends had decreasing effects on CO and HC emissions under warm-up situations, but deteriorations of CO and HC emissions were observed under cold start-up and low vehicle speed operating conditions, and this caused increasing results of CO and HC emission factors in NEDC tests when substituting pure diesel with both of pure biodiesel and biodiesel blend of 20%. Pure biodiesel aroused an increase in NOX emissions compared with pure diesel, but the two low mixture ratio biodiesel blends were observed in different increasing effects and even decreasing effects on NOX emissions. Only pure biodiesel had limited increasing effects on CO₂ emissions.
Technical Paper

Parameter Analysis and Optimization of Road Noise Active Control System

2022-03-29
2022-01-0313
The parameter setting has a great influence on the noise reduction performance of the road noise active control (RNC) system. This paper analyzes and optimizes the parameters of the RNC system. Firstly, the model of the RNC system is established based on the FxLMS algorithm. Based on this model, taking the maximum noise reduction as the evaluation index, the sensitivity analysis of convergence coefficient, filter order, and reference signal gain was carried out using the Sobol method with the data measured by a real vehicle on asphalt pavement at 40km/h. The results show that there is no significant interaction between the three parameters. Then, using the idea of orthogonal experiment, the simulation results of the control model are analyzed by taking the maximum noise reduction as the evaluation index. It is found that the convergence coefficient has the greatest effect on the maximum noise reduction, followed by the filter order, and the reference signal gain has the least effect.
Technical Paper

A Systematic Scenario Typology for Automated Vehicles Based on China-FOT

2018-04-03
2018-01-0039
To promote the development of automated vehicles (AVs), large scale of field operational tests (FOTs) were carried out around the world. Applications of naturalistic driving data should base on correlative scenarios. However, most of the existing scenario typologies, aiming at advanced driving assistance system (ADAS) and extracting discontinuous fragments from driving process, are not suitable for AVs, which need to complete continuous driving tasks. In this paper, a systematic scenario-typology consisting of four layers (from top to bottom: trip, cluster, segment and process) was first proposed. A trip refers to the whole duration from starting at initial parking space to parking at final one. The basic units ‘Process’, during which the vehicle fulfils only one driving task, are classified into parking process, long-, middle- and short-time-driving-processes. A segment consists of two neighboring long-time-driving processes and a middle or/and short one between them.
Technical Paper

One New Transient Transfer Path Analyses of Vehicle Interior Vibration Excited by Vertical Speed Hump

2018-04-03
2018-01-0687
Vertical excitations from obstacles on public road are typical and likely to increase vehicle interior vibration through major paths of wheel spindle-suspension-body. A new transient transfer path analysis (TTPA) methodology is presented combining the substructure reverse matrix method based on FRFs with operational excitation. Additionally, a new kind of experimental method is applied to solve an engineering problem and also validates the TTPA theory above. There are three steps in all. Firstly, vibration in Z direction of wheel spindle was collected in one proving ground and represented on MTS 320 road simulator bench after many times of iteration of piston signals. This procedure guarantees excitation decoupling in one certain direction so it leads to accurate frequency response functions (FRFs) under transient shocking excitation. Secondly, the new transient transfer path analysis approach was used to calculate vibration contribution of wheel-suspension-body.
Technical Paper

Experimental Study on Diesel Spray Characteristics at Different Altitudes

2018-04-03
2018-01-0308
In this study, effects of altitude on free diesel spray morphology, macroscopic spray characteristics and air-fuel mixing process were investigated. The diesel spray visualization experiment using high-speed photography was performed in a constant volume chamber which reproduced the injection diesel-like thermodynamic conditions of a heavy-duty turbocharged diesel engine operating at sea level and 1000 m, 2000 m, 3000 m and 4500 m above sea level. The results showed that the spray morphology became narrower and longer at higher altitude, and small vortex-like structures were observed on the downstream spray periphery. Spray penetration increased and spray angle decreased with increasing altitude. At altitudes of 0 m, 1000 m, 2000 m, 3000 m and 4500 m, the spray penetration at 1.45 ms after start of injection (ASOI) were 79.54 mm, 80.51 mm, 81.49 mm, 83.29 mm and 88.92 mm respectively, and the spray angle were 10.9°, 10.8°, 10.7°, 10.4°and 9.8° respectively.
Technical Paper

Investigation of PEM Fuel Cell Degradation Under On-Off Cyclic Condition

2021-12-31
2021-01-7022
Proton exchange membrane fuel cell (PEMFC) has attracted extensive attention in recent years because of its high efficiency and zero emission. Although fuel cell technology has made great progress, durability is still the bottleneck of its large-scale commercialization. In order to systematically study the degradation of fuel cell system for transportation applications, we selected the most severe operating condition - on-off cyclic condition as the research object, and focused on the influence of cell temperature and air relative humidity on the degradation rate of fuel cell by means of polarization curve, reference voltage and CV. The results show that with the same temperature, the fuel cell performance degradation rate first decreases and then increases with the decrease of humidity, which may be due to the increase of platinum ion transfer rate at high relative humidity and the dry membrane at low relative humidity.
Technical Paper

A Comparative Study on Energy Management Strategies for an Automotive Range-Extender Electric Powertrain

2021-12-31
2021-01-7027
In this work, the influences of various real-timely available energy management strategies on vehicle fuel consumption (VFC) and energy flow of a range-extender electric vehicle were studied The strategies include single-point, multi-point, speed-following, and equivalent consumption minimization strategy. In addition, the dynamic programming method which cannot be used in real time, but can provide the optimal solution for a known drive situation was used for comparison. VFCs and energy flow characteristics with different strategies under Worldwide Harmonized Light Vehicles Test Cycle (WLTC) were obtained through computer modeling, and the results were verified experimentally on a range-extender test bench. The experimental results are consistent with the modeled ones in general with a maximum deviation of 4.11%, which verifies the accuracy of the simulation models.
Technical Paper

Network Delay Modelling and Optimization of Internet-Based Distributed Test Platform for Fuel Cell Electric Vehicle Powertrain System

2021-12-15
2021-01-7026
The accelerated global progress in the research and development of automobile products, and the use of new technologies, such as the Internet, cloud computing and big data, to coordinate development platforms in different regions and fields, can reduce the duration and cost of development and testing. Specifically, in the context of the current coronavirus disease (COVID-19) pandemic, which has caused great obstacles to normal logistics and transportation, personnel exchanges and information communication, platforms that can support global operation are significant for product testing and validation, because they eliminate the need for the transportation of personnel and equipment. Therefore, the establishment of a distributed test and validation platform for automotive powertrain systems, which can integrate software and hardware testing, is important in terms of both scientific research and industrialization.
X