Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

Experiments of Methanol-Gasoline SI Engine Performance and Simulation of Flexible Fuel Characteristic Field

2018-04-03
2018-01-0927
Due to the oil crisis and the requirements of energy saving and emission reduction, the research of alternative energy sources for sustainable development has made good progress. Methanol has proven to be a very suitable alternative clean fuel. Compared with gasoline, methanol has a wide range of source and the higher oxygen content and octane number and combustion efficiency, which are beneficial for the engine performance. The effect of different proportions of methanol-gasoline mixed fuel on the performance of SI engine was studied experimentally (lower proportion and higher proportion). It was found that the engine power performance, fuel economy and exhaust emissions were related to the methanol ratio under different operating conditions. In order to adapt to different operating conditions to improve the performance of methanol-gasoline engine, an on-board flexible fuel mixed system was proposed.
Technical Paper

The Social Economical Benefit Estimation by HEVs Application-Shanghai Case Study

2008-06-23
2008-01-1565
In this paper, a case study of Shanghai HEVs application and its effects on the social and environmental benefits are presented based on the multi views on the different aspects, such as, not only for the fuel consumption saving, but also emissions reduction and health effect, agriculture loss and cleaning cost. The results show that the potential benefits for the society from HEVs application are markedly with the increase of the ratio of HEV in the population of vehicle. Based on this, the policy to promote the HEV purchased by consumers is very important at the beginning of HEV into market.
Technical Paper

Study on Improving the Fuel Economy of the Engine on EP Energy-Saving Vehicle

2008-06-23
2008-01-1780
“Soichiro Honda Cup, Honda Econo-Power Competition”, is an annual international energy-saving competition which is hosted by Honda Motor Co., Ltd. Till now it has been held 27 sessions. The aims of the EP project are: promoting the development of environmental protection, making full use of limit earth resources, challenging the fuel consumption limitation of vehicle. Tongji University's students' team has participated in the competition for seven consecutive times. In order to minimize the fuel consumption of the EP energy-saving vehicle, this paper focuses on the technical methods of improving the fuel economy of the engine. Firstly, the optimization of the carburetor. Secondly, for the purpose of improving combustion efficiency, researches on dual spark plug and compression ratio are done.
Technical Paper

Study on EP Energy-Saving Vehicle

2008-06-23
2008-01-1775
The price of fossil fuels and the increasing inexorable energy crisis have become vital issues for everyone. Tongji University EconoPower Racing Team was established to participate in the “Honda EconoPower Cup” annually. Every contestant in the competition must finish a certain distance in the fixed time, with the gasoline supplied by the committee. After that the committee will measure the fuel consumption of every team and calculate the distance per liter fuel (the farther the better) to determine the champion. In order to enhance the EP vehicle's achievement we've made some improvements, such as framework, body, engine's optimization and so on. In this passage we mainly state some details of our research approaches in framework, steering, transmission, shape and driving strategy. The main technologies were: friction reduction, lightweight, enhancement of power train efficiency, tire selection and driving strategy.
Technical Paper

Characteristics of Output Performances and Emissions of Diesel Engine Employed Common Rail Fueled with Biodiesel Blends from Wasted Cooking Oil

2008-06-23
2008-01-1833
In this paper, the characteristics of performance and emissions of diesel and biodiesel blends are studied in a four-cylinder DI engine employing common rail injection system. The results show that engine output power is further reduced and brake specific fuel consumption (BSFC) increased with the increase of the blend concentration. B100 provides average reduction by 8.6% in power and increase by 11% in BSFC. With respect to the emissions, although NOx emissions were increased with increasing the blend concentration, the increase depends on the load. Filter smoke number is reduced with increasing the blend concentration. At the same time, NO, NO2 and other specific emissions are also investigated. In addition, difference of performance and emission between standard parameters of ECU and modified parameters of ECU is investigated for B10 and B20 based on same output power. The results show that NOx emission and FSN are still lower than baseline diesel.
Technical Paper

Characteristics of Combustion and Emissions in a DI Engine Fueled with Biodiesel Blends from Soybean Oil

2008-06-23
2008-01-1832
Combustion and emission characteristics of diesel and biodiesel blends (soybean methyl ester) were studied in a single-cylinder Direct Injection (DI) engine at different loads and a constant speed. The results show that NOx emission and fuel consumption are increased with increasing biodiesel percentage. Reduction of smoke opacity is significant at higher loads with a higher biodiesel ratio. Compared with the baseline diesel fuel, B20 (20% biodiesel) has a slight increase of NOx emission and similar fuel consumption. Smoke emission of B20 is close to that of diesel fuel. Results of combustion analysis indicate that start of combustion (SOC) for biodiesel blends is earlier than that for diesel. Higher biodiesel percentage results in earlier SOC. Earlier SOC for biodiesel blends is due to advanced injection timing from higher density and bulk modulus and lower ignition delay from higher cetane number.
Technical Paper

Numerical Simulation and Optimization of the Underhood Fluid Field and Cooling Performance for Heavy Duty Commercial Vehicle under Different Driving Conditions

2015-09-29
2015-01-2902
As the commercial vehicle increases staggeringly in China, environmental pollution and excessively fuel consumption can't be neglected anymore. Vehicle thermal management has been adopted by many vehicle manufactures as an ideal alternative to reduce fuel consumption and exhaust emission by its cost-efficient and effective merit. In addition, the components in heavy duty commercial vehicle engine hood may suffer overheat harm. Hence investigating the thermal characteristics in engine hood can be an effective way to identify and dismiss the potential overheat harm. In terms of this, the paper has adopted CFD simulation method to obtain the comprehensive thermal flow field characteristics of engine hood in a heavy commercial vehicle. Then by analyzing the thermal flow field in engine hood, concerning optimization strategies were put forward to improve the thermal environment.
Technical Paper

Reducing Part Load Pumping Loss and Improving Thermal Efficiency through High Compression Ratio Over-Expanded Cycle

2013-04-08
2013-01-1744
In vehicle application, most of time gasoline engines are part load operated, especially in city traffic, part load operation covers most common operation situations, however part load performances deteriorate due to pumping losses and low thermal efficiency. Many different technologies have been applied to improve part load performances. One of them is to adopt over-expanded (Atkinson/Miller) cycle, which uses late/early intake valve closing (LIVC/EIVC) to reduce pumping losses in part load operation. But over-expanded cycle has an intrinsic drawback in that combustion performance deteriorates due to the decline in the effective compression ratio (CR). Combining with high geometry CR may be an ideal solution, however there is a trade-off between maintaining a high CR for good part load fuel consumption and maintaining optimal combustion phasing at higher load.
Technical Paper

Multi-Body Dynamic Simulation and Fatigue Analysis of the Unique Crank - train for a Creative Two-stoke Opposed Piston Diesel Engine

2016-10-17
2016-01-2332
For an innovative opposed-piston diesel engine (OPE) with two-stroke operation mode, it attracted even more attentions than ever in some developed countries all around the world, attributed to the unique advantages of higher power density that conducive to downsize IC engine, as well as the potential of further reducing fuel consumption for outstanding thermal efficiency. To achieve fast practical application and ensure the feasibility in concept design stage, the performance characteristic of OPE crankshaft system was investigated, and thus a theoretical analytic model of crankshaft system in an OP2S (Opposed-piston two stroke) engine was established. The effects of all structural design variables on averaged output torque of OPE crankshaft were analyzed, respectively. It was found that the initial crank angle difference between inner crank web and outer crank web was considered as a most critical contributor to boost the averaged torque output than other design variables.
Technical Paper

Comparison of Different Energy Storage Systems for Range-Extended Electric Urban Bus

2016-09-27
2016-01-8093
Recent years, electric vehicles (EVs) have been widely used as urban transit buses in China, but high costs and a dwindling driving distance caused mainly by relatively frequent usage rate have put the electric bus in a difficult position. Range-extended electric bus (REEbus) is taken as an ideal transitional powertrain configuration, but its efficiency is not so high. Besides, with less batteries to endure more frequently charging and discharging, the lifecycle of battery pack can also be shorten. Aiming at it, range-extended electric powertrains with diverse energy storage systems (ESSs) and proper auxiliary power unit (APU) control strategies are matched and compared to find most proper ESS configuration for REEbus through simulation, which is based on a 12 meter-long urban bus.
Technical Paper

Effect of EGR Temperature on PFI Gasoline Engine Combustion and Emissions

2017-10-08
2017-01-2235
In order to investigate the impacts of recirculated exhaust gas temperature on gasoline engine combustion and emissions, an experimental study has been conducted on a turbocharged PFI gasoline engine. The engine was equipped with a high pressure cooled EGR system, in which different EGR temperatures were realized by using different EGR coolants. The engine ran at 2000 r/min and 3000 r/min, and the BMEP varied from 0.2MPa to 1.0MPa with the step of 0.2MPa. At each case, there were three conditions: 0% EGR, 10% LT-EGR, 10% HT-EGR. The results indicated that LT-EGR had a longer combustion duration compared with HT-EGR. When BMEP was 1.0 MPa, CA50 of HT-EGR advanced about 5oCA. However, CA50 of LT-EGR could still keep steady and in appropriate range, which guaranteed good combustion efficiency. Besides, LT-EGR had lower exhaust gas temperature, which could help to suppress knock. And its lower exhaust gas temperature could reduce heat loss. These contributed to fuel consumption reduction.
Technical Paper

Experimental Research on Emission Characteristics of Extended-Range Electric Transit Bus

2017-10-08
2017-01-2394
The range-extended electric transit bus (REEbus) equipped with the auxiliary power unit (APU) using high efficient diesel engine as power source can reduce the cost of power battery and is an ideal transitional powertrain architecture to the pure electric drive. Based on chassis tests of a 12m long REEbus, fuel consumption and emission characteristics during Charge-Sustaining (CS) stage effected by temperature of the REEbus are researched. The APU of REEbus starts to work around just one point with best efficiency and lower emission when the state of charge (SOC) is too low and stop when the SOC is high, which aims to lower fuel consumption. As a result, even during CS stage, the fuel consumption of REEbus is only 22.84 L/100km. Also almost all emissions decrease dramatically and the NOx emission is only 0.68g/km, but the ultrafine-particle number increases owing to better combustion.
Technical Paper

Homogeneous Charge Preparation of Diesel Fuel by Spray Impingement onto a Hot Surface at Intake Manifold

2006-10-16
2006-01-3322
A segment of steel tube with the inner diameter of 60 mm and length of 100 mm was fixed between the intake manifold and cylinder head in a direct injection natural aspirated diesel engine. The surface of the tube could be heated to be above 400 °C by the heater enwrapped outside within several minutes under the power less than 600 W. The tip of an injector traditionally used for in-cylinder diesel direct injection was extended to the axis of the tube. The diesel sprays could impinge onto the hot inner surface of the tube and atomize quickly if the temperature of the tube was high enough. Then the fuel-air mixture would be sucked into the cylinder, and HCCI combustion could be fulfilled. The vaporization ratio of the impinged diesel sprays was estimated by fuel consumption, intake air flux and excess air coefficient (λ) calculated from the volumetric concentration of O2, CO2 and CO emissions. The NOx emission was always very low.
Technical Paper

Numerical study of Intake Manifold Water Injection on Performance and Emissions in a Heavy-duty Nature Gas Engine

2019-04-02
2019-01-0562
The performance of heavy-duty nature gas engines has been limited by combustion temperature and NOx emissions for a long time. Recently, water injection technology has been widely considered as a technical solution in reducing fuel consumption and emissions simultaneously in both diesel and gasoline engines. This paper focuses on the impacts of intake manifold water injection on characteristics of combustion and emissions in a heavy-duty nature gas engine through numerical methods. A detailed numerical model was established and validated with experimental data of pressure traces in CFD software coupled with detailed chemical kinetics. The simulation was mainly carried out under low speed and full load condition, and knock level was also measured and calculated by Logarithmic Knock Intensity (LKI). The results show that intake manifold water injection is an efficient way to reduce high NOX emissions in nature gas engines without deteriorating other emissions characteristics.
Technical Paper

Genetic Algorithm-Based Parameter Optimization of Energy Management Strategy and Its Analysis for Fuel Cell Hybrid Electric Vehicles

2019-04-02
2019-01-0358
Fuel cell hybrid electric vehicles (FCHEVs) composed of fuel cells and batteries can improve the dynamic response and durability of vehicle propulsion. In addition, braking energy can be recovered by batteries. The energy management strategy (EMS) for distributing the requested power through different types of energy sources plays an important role in FCHEVs. Reasonable power split not only improves vehicle performance but also enhances fuel economy. In this paper, considering the power tracking control strategy which is widely adopted in Advanced Vehicle Simulator (ADVISOR), a constrained nonlinear programming parameter optimization model is established for minimizing fuel consumption. The principal parameters of power tracking control strategy are set as the optimized variables, with the dynamic performance index of FCHEVs being defined as the constraint condition. Then, the genetic algorithm (GA) is applied in the control strategy design for solving the optimization problem.
Technical Paper

Comparison of Particulate Emissions of a Range Extended Electric Vehicle under Different Energy Management Strategies

2019-04-02
2019-01-1189
Range extended electric vehicles achieve significant reductions in fuel consumption by employing as an energy source a small displacement combustion engine that is optimized for high efficiency at one, or a few, operating points. The present paper examines the impact of various energy management strategies on the particulate emissions from the auxiliary power unit (APU) of a range extended electric bus, including optimized auxiliary power unit (APU) on/off strategy, single-point strategy, two-point strategy, power-following strategy and equivalent fuel consumption minimization strategy (ECMS). In addition, this paper also compares the particulate emissions of single energy storage system and composite energy storage system on single-point energy management strategy.
Technical Paper

Combined Technologies for Efficiency Improvement on a 1.0 L Turbocharged GDI Engine

2019-04-02
2019-01-0233
The CO2 reduction request for automotive industry promotes the efforts on the engine thermal efficiency improvement. The goal of this research is to improve the thermal efficiency on an extremely downsized 3-cylinder 1.0 L turbocharged gasoline direct injection engine. Effects of compression ratio, exhaust gas recirculation (EGR), valve timing and viscosity of oil on fuel economy were studied. The results show that increasing compression ratio, from 9.6 to 12, can improve fuel economy at relative low load (below 12 bar BMEP), but has a negative effect at high load due to increased knock intensity. EGR can significantly reduce the pumping loss at low load, optimize combustion phase and reduce exhaust gas temperature. Therefore, the fuel consumption is reduced at all test points. The average brake thermal efficiency (BTE) benefit percentage is 3.47% with 9.6 compression ratio and 5.33 % with 12 compression ratio.
X