Refine Your Search

Search Results

Viewing 1 to 12 of 12
Journal Article

Emissions Reduction Potential of Extremely High Boost and High EGR Rate for an HSDI Diesel Engine and the Reduction Mechanisms of Exhaust Emissions

2008-04-14
2008-01-1189
The effects of an increasing boost pressure, a high EGR rate and a high injection pressure on exhaust emissions from an HSDI (High Speed Direct Injection) diesel engine were examined. The mechanisms were then investigated with both in-cylinder observations and 3DCFD coupled with ϕT-map analysis. Under a high-load condition, increasing the charging efficiency combined with a high injection pressure and a high EGR rate is an effective way to reduce NOx and soot simultaneously, which realized an ultra low NOx of 16ppm at 1.7MPa of IMEP (Indicated Mean Effective Pressure). The flame temperature with low NOx and low soot emissions is decreased by 260K from that with conventional emissions. Also, the distribution of the fuel-air mixture plot on a ϕT-map is moved away from the NOx and soot formation peninsula, compared to the conventional emissions case.
Journal Article

Low Emissions and High-Efficiency Diesel Combustion Using Highly Dispersed Spray with Restricted In-Cylinder Swirl and Squish Flows

2011-04-12
2011-01-1393
A new clean diesel combustion concept has been proposed and its excellent performance with respect to gas emissions and fuel economy were demonstrated using a single cylinder diesel engine. It features the following three items: (1) low-penetrating and highly dispersed spray using a specially designed injector with very small and numerous orifices, (2) a lower compression ratio, and (3) drastically restricted in-cylinder flow by means of very low swirl ports and a lip-less shallow dish type piston cavity. Item (1) creates a more homogeneous air-fuel mixture with early fuel injection timings, while preventing wall wetting, i.e., impingement of the spray onto the wall. In other words, this spray is suitable for premixed charge compression ignition (PCCI) operation, and can decrease both nitrogen oxides (NOx) and soot considerably when the utilization range of PCCI is maximized.
Technical Paper

Schlieren Observations of In-Cylinder Phenomena Concerning a Direct-Injection Gasoline Engine

1998-10-19
982696
The schlieren visualization of in-cylinder processes from the side of an engine cylinder is useful to understand the phenomena which change along the cylinder axis. A transparent collimating cylinder, TCC, permits schlieren observation inside the cylinder through its transparent wall. In this study, a single cylinder visualization engine with the TCC was applied to a direct-injection gasoline engine. A fuel spray, mixture formation and combustion were observed with a simultaneous measurement of in-cylinder pressure. The shape of the fuel spray and subsequent mixture formation process are drastically changed with the injection timing. The images of luminous flame were also taken with the schlieren images during the combustion period. Stable combustion, misfire and abnormal combustion are discussed with the comparison between the observed results and in-cylinder pressure analysis.
Technical Paper

Fuel Spray Simulation of Slit Nozzle Injector for Direct-Injection Gasoline Engine

2002-03-04
2002-01-1135
In direct-injection (DI) gasoline engines, spray characteristics greatly affect engine combustion. For the rapid development of new gasoline direct-injectors, it is necessary to predict the spray characteristics accurately by numerical analysis based on the injector nozzle geometry. In this study, two-phase flow inside slit nozzle injectors is calculated using the volume of fluid method in a three-dimensional CFD. The calculation results are directly applied to the boundary conditions of spray calculations, of which the submodels are recently developed to predict spray formation process in direct injection gasoline engines. The calculation results are compared with the experiments. Good agreements are obtained for typical spray characteristics such as spray shape, penetration and Sauter mean diameter at both low and high ambient pressures. Two slit nozzle injectors of which the slit thickness is different are compared.
Technical Paper

Cause of Exhaust Smoke and Its Reduction Methods in an HSDI Diesel Engine Under High-Speed and High-Load Conditions

2002-03-04
2002-01-1160
The cause of the exhaust smoke and its reduction methods in a small DI Diesel engine with a small-orifice-diameter nozzle and common rail F.I.E. were investigated under high-speed and high-load condition, using both in-cylinder observations and Three-dimensional numerical analyses. The following points were clarified during this study. At these conditions, fuel sprays are easily pushed away by a strong swirl, and immediately flow out to the squish area by a strong reverse squish. Therefore, the air in the cavity is not effectively used. Suppressing the airflow in a piston cavity, using such ideas as enlarging the piston cavity diameter or reducing the port swirl ratio, decreases the excessive outflow of the fuel-air mixture into the squish area, and allows the full use of air in the whole cavity. Hence, exhaust smoke is reduced.
Technical Paper

Stratification Features of Swirl Nozzle Sprays and Slit Nozzle Spray in DI Gasoline Combustion

2003-05-19
2003-01-1812
The stratification feature of DI gasoline combustion was studied by using a constant volume combustion vessel. An index of stratification degree, defined as volumetric burning velocity, has been proposed based on the thermodynamic analysis of the indicated pressure data. The burning feature analysis using this stratification degree and the fuel vapor concentration measurement using He-Ne laser ray absorption method were carried out for the swirl nozzle spray with 90° cone angle and the slit nozzle spray with 60° fan angle. Ambient pressure and ambient temperature were changed from atmospheric condition to 0.5∼0.6 MPa and 465 K, respectively. Air Swirl with swirl ratio of 0∼1.0 were added for the 90° swirl nozzle spray. Single component fuels with different volatility and self-ignitability from each other were used besides gasoline fuel. The major findings are as follows. High ambient temperature improves stratification degree due to the enhanced fuel vaporization and vapor diffusion.
Technical Paper

Numerical Investigation of Vehicle Aerodynamics with Overlaid Grid System

1995-02-01
950628
The drag reduction mechanism in newly developed low aerodynamic drag model car is investigated through numerical simulation. In order to deal with the computational domain around a three-dimensional complicated vehicle body, the method of overlaid grid system is employed. The results of computational case study on the body shape demonstrate that the lateral tapering near the rear end and the spats around the wheels bring better flow properties for drag reduction, such as the pressure recovery in the wake.
Technical Paper

Fuel Effects on Particulate Emissions from D. I. Engine - Chemical Analysis and Characterization of Diesel Fuel

1995-10-01
952351
The properties of diesel fuels were investigated in terms of particulate emissions to clarify the specification of such a diesel fuel for minimizing particulate emissions. Diesel fuels were analyzed using thin layer chromatography (TLC), and gas chromatography/mass spectrometry (GC/MS). These analysis revealed the entire composition of hydrocarbons in diesel fuels according to molecular formula. The entire composition of hydrocarbons in diesel fuels could be expressd on a three-dimensional graph: the X-axis as carbon number, the Y-axis as H/C ratio and the Z-axis as the amount of hydrocarbons of identical molecular formula. By using the graph, the properties reported so far were investigated. Also, simplified images of the fuel sprayed into a cylinder and its flame were derived from the observational results previously reported.
Technical Paper

Validation of Diesel Fuel Spray and Mixture Formation from Nozzle Internal Flow Calculation

2005-05-11
2005-01-2098
A series calculation methodology from the injector nozzle internal flow to the in-cylinder fuel spray and mixture formation in a diesel engine was developed. The present method was applied to a valve covered orifice (VCO) nozzle with the recent common rail injector system. The nozzle internal flow calculation using an Eulerian three-fluid model and a cavitation model was performed. The needle valve movement during the injection period was taken into account in this calculation. Inside the nozzle hole, cavitation appears at the nozzle hole inlet edge, and the cavitation region separates into two regions due to a secondary flow in the cross section, and it is distributed to the nozzle exit. Unsteady change of the secondary flow caused by needle movement affects the cavitation distribution in the nozzle hole, and the spread angle of the velocity vector at the nozzle exit.
Technical Paper

Research and Development of a New Direct Injection Gasoline Engine

2000-03-06
2000-01-0530
A new stratified charge combustion system has been developed for direct injection gasoline engines. The special feature of this system is employment of a thin fan-shaped fuel spray formed by a slit nozzle. The stratified mixture is produced by the combination of this fan-spray and a shell-shaped piston cavity. Both under-mixing and over-mixing of fuel in the stratified mixture is reduced by this system. This combustion system does not require distinct charge motion such as tumble or swirl, which enables intake port geometry to be simplified to improve full load performance. The effects of the new system on engine performance at part load are improved fuel consumption and reduced smoke, CO and HC emissions, obviously at medium load and medium engine speed. HC emissions at light load are also improved even with high EGR conditions.
Technical Paper

Fuel Effects on Particulate Emissions from D.I. Engines - Precise Analyses and Evaluation of Diesel Fuel

2000-10-16
2000-01-2882
Precise analytical methods for characterizing diesel fuel yielding the lowest particulate emissions were developed. The methods consist of preparative-scale high pressure liquid chromatography (HPLC), field ionization mass spectrometry (FIMS), analytical-scale HPLC, and carbon-13 nuclear magnetic resonance spectrometry (13C-NMR). A diesel fuel was first separated into an aliphatic fraction and an aromatic fraction by semipreparative-scale HPLC. Then, the aliphatic fraction was analyzed by FIMS and the spectrum was compared with that of the whole fuel. The aromatic fraction was analyzed by analytical-scale HPLC to obtain the chromatogram of the aromatic hydrocarbons with a high S/N. In addition to these analyses, the fuel was analyzed by 13C-NMR to obtain the concentration of the carbon atoms of the straight chain, branched chain and aromatic-ring in hydrocarbons.
Technical Paper

A Method for Suppressing Formation of Deposits on Fuel Injector for Direct Injection Gasoline Engine

1999-10-25
1999-01-3656
Our concern was with the phenomenon of the fuel flow rate change in the injector due to deposit formation in the direct injection gasoline engine. The fundamental factors in the deposit formation on the nozzle were investigated, and engine dynamometer tests were performed. It was clarified that the residual fuel in the nozzle hole should be kept in a liquid state so that deposit precursors could be washed away by fuel injections. As a consequence, the nozzle temperature had to be below the 90 vol. % distillation temperature of the fuel, which was the most important index to suppress the deposit formation.
X