Refine Your Search

Search Results

Viewing 1 to 15 of 15
Journal Article

Backward Flow of Hot Burned Gas Surrounding High-Pressure Diesel Spray Flame from Multi-hole Nozzle

2015-09-01
2015-01-1837
The backward flow of the hot burned gas surrounding a diesel flame was found to be one of the factors dominating the set-off length (also called the lift-off length), that is, the distance from a nozzle exit into which a diffusion flame cannot intrude. In the combustion chamber of an actual diesel engine, the entrainment of the surrounding gas into a spray jet from a multi-hole nozzle is restricted by the walls and adjacent spray jets, which induces the backward flow of the surrounding gas. A new momentum theory to calculate the backward flow velocity was established by extending Wakuri's momentum theory. Shadowgraph imaging in an optical engine successfully visualized the backward flow of the hot burned gas.
Journal Article

Injection Nozzle Coking Mechanism in Common-rail Diesel Engine

2011-08-30
2011-01-1818
The hole diameter of injection nozzles in diesel engines has become smaller and the nozzle coking could potentially cause injection characteristics and emissions to deteriorate. In this research, engine tests with zinc-added fuels, deposit analyses, laboratory tests and numerical calculations were carried out to clarify the deposit formation mechanisms. In the initial phase of deposit formation, lower zinc carboxylate formed close to the nozzle hole outlet by reactions between zinc in the fuel and lower carboxylic acid in the combustion gas. In the subsequent growth phase, the main component changed to zinc carbonate close to nozzle hole inlet by reactions with CO₂ in the combustion gas. Metal components and combustion gases are essential elements in the composition of these deposits. One way of removing these deposits is to utilize cavitations inside the nozzle holes.
Technical Paper

Study of Future Engine Oil (First Report): Future Engine Oil Scenario

2007-07-23
2007-01-1977
In recent years, problems such as global warming, the depletion of natural resources, and air pollution caused by emissions are emerging on a global scale. These problems call for efforts directed toward the development of fuel-efficient engines and exhaust gas reduction measures. As a solution to these issues, performance improvements should be achieved on the oil that lubricates the sliding sections of engines. This report points to features required of future engine oil-such as contribution to fuel consumption, minimized adverse effects on the exhaust gas aftertreatment system, and improved reliability achieved by sludge reduction-and discusses the significance of these features. For engine oil to contribution of engine oil to lower fuel consumption, we examined the effects of reduced oil viscosity on friction using gasoline and diesel engines.
Technical Paper

Twenty-Year Review of Polymer-Clay Nanocomposites at Toyota Central R&D Labs., Inc.

2007-04-16
2007-01-1017
More than twenty years have passed since we invented polymer-clay nanocomposites (PCN), in which only a few wt.-% of silicate is randomly and homogeneously dispersed in the polymer matrix. When molded, these nanocomposites show superior properties compared to pristine polymers such as tensile strength, tensile modulus, heat distortion temperature, gas barrier property, and so on. The number of papers on PCN has increased rapidly in recent years, reaching over 500 only in 2005. As the pioneers of the new technology, we will review its history highlighting our works. Epoch-making events of PCN are as follows: In 1985, The first PCN, nylon 6-clay hybrid (NCH), was invented. In 1987, NCH was first presented at the ACS Fall Meetings. In 1989, NCH was presented at the MRS Fall Meetings, firing PCN. In 1989, Toyota launched cars equipped with a NCH part. In 1996, Clay was found to cause a memory effect in liquid crystals.
Technical Paper

Development of Deodorant Filter for Diesel Smell

2004-03-08
2004-01-1384
One of typical outcome of the desire for increasing passenger comfort is that especially for deodorant efficiency. Since customers are becoming so sensitive about cabin odor, development of more effective deodorant filter is strongly required. Out side of vehicle, which most being disliked is diesel odor, therefore, analysis on this diesel gas and investigation to identity the ingredient for the main cause of the strong odor were executed, and found that acetaldehyde gas is the one. Therefore, identification of the chemical that adsorb acetaldehyde gas with being impregnated in activated carbon was required, since activated carbon itself does not have ability of adsorbing acetaldehyde gas, and finally found appropriate chemical, vitamin Bx. At the end of this report, sensory evaluation result by twenty panelists with deodorant type cabin air filter impregnated with vitamin Bx, and its efficiency for deodorant will be shown at the end of this report.
Technical Paper

Improvement of Heat Resistance for Bioplastics

2003-03-03
2003-01-1124
We studied the adoption of plastics derived from plants (bioplastics) such as poly(lactic acid) (PLA) for automotive parts in order to contribute to suppressing the increase in CO, emissions. For this application. major improvements of heat and impact resistance are needed. As a method to improve heat resistance, we developed PLA combined with clay of high heat resistance. As a result. we succeeded in synthesizing a PLA-clay nanocomposite using 18(OH)2-Mont. In-mold crystallization of PLA-clay nanocomposite lead to the great suppression of storage modulus decrease at high temperature. which in turn improved the heat resistance of PLA.
Technical Paper

Development of High Performance Three-Way-Catalyst

2006-04-03
2006-01-1061
In conventional gasoline engine vehicles, three-way catalysts are used to simultaneously remove HC, CO and NOx from the exhaust gas. The effectiveness of the catalyst to remove these harmful species depends strongly on the oxygen concentration in the exhaust gas. Deterioration of three-way catalyst results in a reduction in its purification activity and OSC (oxygen storage capacity). In this investigation, additive elements were used to enhance the durability and OSC of the catalyst support material. An optimized formulation of a CeO2-ZrO2 and a ZrO2 material was developed to have excellent durability, improved OSC, enhanced interaction between precious metals and support materials, and increase thermal stability. Using these newly developed support materials, catalysts with increased performance was designed.
Technical Paper

Investigation on Oxidation Stability of Engine Oils Using Laboratory Scale Simulator

1995-10-01
952528
The purposes of this paper are to develop a new laboratory oxidation stability testing method and to clarify factors relative to the viscosity increase of engine oil. Polymerized products, obtained from the oil after a JASO M333-93 engine test, were found to consist mainly of carboxyl, nitrate and nitro compounds and to increase the oil viscosity. A good similarity between the JASO M333-93 test and the laboratory simulation test was found for the polymerized products. The products were obtained not by heating oil only in air but by heating oil while supplying a synthetic blowby gas consisting of fuel pyrolysis products, NO, SO2 and air. The laboratory test has also revealed that the viscosity increase depends on oil quality, organic Fe content and hydrocarbon composition in the fuel. Moreover, it has been found that blowby gas and organic Fe accelerate ZnDTP consumption and that aromatics concentration in the fuel correlates with the viscosity increase of oil.
Technical Paper

Numerical Analysis of Fuel Behavior in a Port-Injection Gasoline Engine

1997-02-24
970878
Three-dimensional numerical analysis of fuel liquid and mixture behavior in a port-injection gasoline engine is assessed by comparing calculations with measurements. The fuel mass distributed in the intake port and cylinder is measured using an engine with hydraulic valve and gas sampling system. The experimental results show that about half of the fuel mass per injection enters the cylinder, and the rest stays in the port. The difference of the mass fraction of injected fuel directly entering the cylinder is small between the cases of single pulse injection and serial injection. Therefore, three-dimensional calculation presupposing single pulse injection has difficulty in predicting the in-cylinder mixture formation process, although it can analyze the amount of fuel wetting the port wall. The calculations are performed for a port-injection engine, and the differences of fuel behavior with respect to swirl control valve opening and wall temperature are discussed.
Technical Paper

Fuel Effects on Particulate Emissions from D.I. Engine - Relationship among Diesel Fuel, Exhaust Gas and Particulates

1997-05-01
971605
The compositions of hydrocarbons in diesel fuel, exhaust gas and particulates were analyzed and the relationships among them were determined. It was found that the compositions of the hydrocarbons in the exhaust gas were almost the same as that of the fuel, and that the hydrocarbons in the particulates corresponded to their heavy fractions. When the engine condition was fixed, both the soluble organic fraction (SOF) and insoluble fraction ( ISF) showed positive correlation coefficients versus HC×R310, where HC denotes the hydrocarbon emission and R310 denotes the backend fraction, as measured by the fraction of fuel boiling above 310°C. On the other hand, when the engine condition was varied, ISF had negative correlation coefficients versus HC×R310, while SOF showed positive correlation coefficients.
Technical Paper

NOx Reduction Behavior on Catalysts With Non-Thermal Plasma in Simulated Oxidizing Exhaust Gas

2004-06-08
2004-01-1833
NOx reduction activity in an oxidizing exhaust gas was significantly improved by discharging non-thermal plasma and catalysts (plasma assisted catalysis). We investigated effective catalyst for plasma assisted catalysis in view of hydrocarbon-selective catalytic reduction(HC-SCR). Plasma assist was effective for γ-alumina and alkali or alkaline earth metals loaded zeolite and γ-alumina showed the highest NOx conversion among these catalysts. On the other hand, Plasma assist was not effective for Cu-ZSM-5 and Pt loaded catalyst. The NOx conversion for the plasma assisted γ-alumina decreased by formation of a deposit on the catalyst below 400°C. It is shown that indium loading on γ-alumina improved the NOx reduction activity and suppressed the degradation of the NOx reduction activity at 300°C with plasma assist.
Technical Paper

Development of Advanced Three-Way Catalyst with Improved NOx Conversion

2015-04-14
2015-01-1005
Countries and regions around the world are tightening emissions regulations in reaction to the increasing awareness of environmental conservation. At the same time, growing concerns about the depletion of raw materials as vehicle ownership continues to increase is prompting automakers to look for ways of decreasing the use of platinum-group metals (PGMs) in the exhaust systems. This research has developed a new catalyst with strong robustness against fluctuations in the exhaust gas and excellent nitrogen oxide (NOx) conversion performance. This catalyst incorporates rhodium (Rh) clusters with a particle size of several nanometers, and stabilized CeO2-ZrO2 solid-solution (CZ) with a pyrochlore crystal structure as a high-volume oxygen storage capacity (OSC) material with a slow O2 storage rate.
Technical Paper

Development of Three-Way Catalysts Enhanced NOx Purifying Activity

2018-04-03
2018-01-0942
Growing concerns about the depletion of raw materials as vehicle ownership continues to increase is prompting automakers to look for ways of decreasing the use of platinum-group metals (PGMs) in the exhaust systems. This research has developed a new catalyst with strong robustness against fluctuations in the exhaust gas and excellent nitrogen oxide (NOx) conversion performance. One of the key technologies is a new OSC material that has low surface area (SA) and high OSC performance. We enhanced the pyrochlore- ceria/zirconia (CZ) which has a very small SA. In order to enhance the heat resistance and promote the OSC reaction, we selected and optimized the additive element. This material showed high OSC performance especially in the temperature range of 400 degrees or less. Another key technology is washcoat structure that has high gas diffusivity by making connected pore in the washcoat (New pore forming technology).
Technical Paper

Development of Three-Way Catalyst with Advanced Coating Layer

2020-04-14
2020-01-0653
Further improvements in catalyst performance are required to help protect the atmospheric environment. However, from the viewpoint of resource availability, it is also necessary to decrease the amount of precious metals used at the active sites of the catalyst. Therefore, a high-performance three-way catalyst with an advanced coating layer has been developed to lower the amount of precious metal usage. Fuel efficiency improvement technologies such as high compression ratios and a large-volume exhaust gas recirculation (EGR) generally tend to increase the ratio of hydrocarbons (HC) to nitrogen oxides (NOx) in exhaust gas. This research focused on the palladium (Pd) loading depth in the coating layer with the aim of improving the hydrocarbon (HC) conversion activity of the catalyst.
Journal Article

Analysis of Oxidative Deterioration of Biodiesel Fuel

2008-10-06
2008-01-2502
Methyl esters of saturated/unsaturated higher aliphatic acids (FAMEs) and a FAME of waste cooking oil (WCOME) were heated at 120°C in an air gas flow. The samples were analyzed before and after heating, using six different methods including electrospray ionization mass spectrometry. As a result, the samples after heating were found to contain low molecular weight aliphatic compounds and oligomers of the FAME. Based on the chemical structure of these oxidation products, reaction schemes were proposed for the deterioration of FAMEs. In addition, two unsaturated FAMEs containing 2,6-di-t-butyl-p-cresol (BHT) were similarly heated and analyzed to examine the effect of BHT on the oxidation of these FAME.
X