Refine Your Search



Search Results

Technical Paper

An Intelligent Catalyst

The catalyst of the crystalline ceramics known as a perovskite-type oxide was designed and controlled at the atomic level in order to create a new function for self-regeneration of precious metals in a usage ambience without auxiliary treatment. We have already reported that a catalyst with Pd supported on the perovskite-type oxide has higher activity than a catalyst with Pd supported on alumina. It was also found that Pd supported on the perovskite catalyst is finely dispersed [1, 2 and 3] The object of this study was to investigate the mechanism of self-regeneration by using hyper-analytical facilities. XAFS analysis, at SPring-8 (8 GeV), revealed that Pd is in six-fold coordinations with oxygen in a perovskite crystal, which indicating that Pd occupies the B site of the unit formula of ABO3 in the perovskite crystal structure under oxidation atmosphere.
Technical Paper

Stratification Features of Swirl Nozzle Sprays and Slit Nozzle Spray in DI Gasoline Combustion

The stratification feature of DI gasoline combustion was studied by using a constant volume combustion vessel. An index of stratification degree, defined as volumetric burning velocity, has been proposed based on the thermodynamic analysis of the indicated pressure data. The burning feature analysis using this stratification degree and the fuel vapor concentration measurement using He-Ne laser ray absorption method were carried out for the swirl nozzle spray with 90° cone angle and the slit nozzle spray with 60° fan angle. Ambient pressure and ambient temperature were changed from atmospheric condition to 0.5∼0.6 MPa and 465 K, respectively. Air Swirl with swirl ratio of 0∼1.0 were added for the 90° swirl nozzle spray. Single component fuels with different volatility and self-ignitability from each other were used besides gasoline fuel. The major findings are as follows. High ambient temperature improves stratification degree due to the enhanced fuel vaporization and vapor diffusion.
Technical Paper

Fuel Effects on Particulate Emissions from D.I. Engine - Relationship among Diesel Fuel, Exhaust Gas and Particulates

The compositions of hydrocarbons in diesel fuel, exhaust gas and particulates were analyzed and the relationships among them were determined. It was found that the compositions of the hydrocarbons in the exhaust gas were almost the same as that of the fuel, and that the hydrocarbons in the particulates corresponded to their heavy fractions. When the engine condition was fixed, both the soluble organic fraction (SOF) and insoluble fraction ( ISF) showed positive correlation coefficients versus HC×R310, where HC denotes the hydrocarbon emission and R310 denotes the backend fraction, as measured by the fraction of fuel boiling above 310°C. On the other hand, when the engine condition was varied, ISF had negative correlation coefficients versus HC×R310, while SOF showed positive correlation coefficients.
Technical Paper

Reduction of Diesel Particulate Matter by Oil Consumption Improvement Utilizing Radioisotope Tracer Techniques

A study was conducted to reduce unburned oil fractions in diesel particulate matter (PM) by improving oil consumption. A method utilizing radioisotope 14C was developed to measure the unburned oil fractions separately for the four paths by which oil is consumed: valve stem seals, piston rings, PCV system, turbocharger. The conversion ratio of oil consumption to PM was calculated by comparing the unburned oil emission rates with oil consumption rates, which were obtained by the use of the 35S tracer method. The result in an experimental diesel engine shows the highest conversion ratio for the oil leaking through the valve stem seals. The modifications to the engine were thereby focused on reducing the leakage of the stem seals. This stem seal modification, along with piston ring improvements, reduced oil consumption, resulting in the unburned oil fractions in PM being effectively reduced.
Technical Paper

Effect of Hydrocarbon Molecular Structure on Diesel Exhaust Emissions Part 2: Effect of Branched and Ring Structures of Paraffins on Benzene and Soot Formation

The effect of the chemical reactivity of diesel fuel on PM formation was investigated using a flow reactor and a shock tube. Reaction products from the flow-reactor pyrolysis of the three diesel fuels used for the engine tests in Part 1(1) (“Base”, “Improved” and Swedish “Class-1”) were analyzed by gas chromatography. At 850C, Swedish “Class-1” fuel was found to produce the most PM precursors such as benzene and toluene among the three fuels, even though it contains very low amounts of aromatics. The chemical analyses described in Part 1 revealed that “Class-1” contains a large amount of branched and cyclic structures in the saturated hydrocarbon portion of the fuel. These results suggest that the presence of such branched and ring structures can increase exhaust PM emissions.
Technical Paper

Fuel Effects on Particulate Emissions from D. I. Engine - Chemical Analysis and Characterization of Diesel Fuel

The properties of diesel fuels were investigated in terms of particulate emissions to clarify the specification of such a diesel fuel for minimizing particulate emissions. Diesel fuels were analyzed using thin layer chromatography (TLC), and gas chromatography/mass spectrometry (GC/MS). These analysis revealed the entire composition of hydrocarbons in diesel fuels according to molecular formula. The entire composition of hydrocarbons in diesel fuels could be expressd on a three-dimensional graph: the X-axis as carbon number, the Y-axis as H/C ratio and the Z-axis as the amount of hydrocarbons of identical molecular formula. By using the graph, the properties reported so far were investigated. Also, simplified images of the fuel sprayed into a cylinder and its flame were derived from the observational results previously reported.
Technical Paper

Investigation on Oxidation Stability of Engine Oils Using Laboratory Scale Simulator

The purposes of this paper are to develop a new laboratory oxidation stability testing method and to clarify factors relative to the viscosity increase of engine oil. Polymerized products, obtained from the oil after a JASO M333-93 engine test, were found to consist mainly of carboxyl, nitrate and nitro compounds and to increase the oil viscosity. A good similarity between the JASO M333-93 test and the laboratory simulation test was found for the polymerized products. The products were obtained not by heating oil only in air but by heating oil while supplying a synthetic blowby gas consisting of fuel pyrolysis products, NO, SO2 and air. The laboratory test has also revealed that the viscosity increase depends on oil quality, organic Fe content and hydrocarbon composition in the fuel. Moreover, it has been found that blowby gas and organic Fe accelerate ZnDTP consumption and that aromatics concentration in the fuel correlates with the viscosity increase of oil.
Technical Paper

Numerical Investigation of Vehicle Aerodynamics with Overlaid Grid System

The drag reduction mechanism in newly developed low aerodynamic drag model car is investigated through numerical simulation. In order to deal with the computational domain around a three-dimensional complicated vehicle body, the method of overlaid grid system is employed. The results of computational case study on the body shape demonstrate that the lateral tapering near the rear end and the spats around the wheels bring better flow properties for drag reduction, such as the pressure recovery in the wake.
Technical Paper

Development of Three-Way Catalysts Enhanced NOx Purifying Activity

Growing concerns about the depletion of raw materials as vehicle ownership continues to increase is prompting automakers to look for ways of decreasing the use of platinum-group metals (PGMs) in the exhaust systems. This research has developed a new catalyst with strong robustness against fluctuations in the exhaust gas and excellent nitrogen oxide (NOx) conversion performance. One of the key technologies is a new OSC material that has low surface area (SA) and high OSC performance. We enhanced the pyrochlore- ceria/zirconia (CZ) which has a very small SA. In order to enhance the heat resistance and promote the OSC reaction, we selected and optimized the additive element. This material showed high OSC performance especially in the temperature range of 400 degrees or less. Another key technology is washcoat structure that has high gas diffusivity by making connected pore in the washcoat (New pore forming technology).
Technical Paper

Development of Advanced Three-Way Catalyst with Improved NOx Conversion

Countries and regions around the world are tightening emissions regulations in reaction to the increasing awareness of environmental conservation. At the same time, growing concerns about the depletion of raw materials as vehicle ownership continues to increase is prompting automakers to look for ways of decreasing the use of platinum-group metals (PGMs) in the exhaust systems. This research has developed a new catalyst with strong robustness against fluctuations in the exhaust gas and excellent nitrogen oxide (NOx) conversion performance. This catalyst incorporates rhodium (Rh) clusters with a particle size of several nanometers, and stabilized CeO2-ZrO2 solid-solution (CZ) with a pyrochlore crystal structure as a high-volume oxygen storage capacity (OSC) material with a slow O2 storage rate.
Technical Paper

A Study on Natural Gas Fueled Homogeneous Charge Compression Ignition Engine - Expanding the Operating Range and Combustion Mode Switching

Natural gas homogeneous charge compression ignition (HCCI) engines require high compression ratios and intake air heating because of the high auto-ignition temperature of natural gas. In the first study, the natural gas fueled HCCI combustion with internal exhaust gas recirculation (EGR) was achieved without an intake air heater. The effects of the combustion chamber configuration, turbocharging, and external EGR were investigated for expanding the operating range. As a result, it was cleared that the combination of internal / external EGR and turbocharging is effective for expanding the HCCI operational range toward high loads. Meanwhile, the HCCI combustion characteristics at high engine speeds were unstable because of an insufficient reaction time for auto-ignition. Although the engine operation with a richer air-fuel ratio was effective for improving the combustion stability, the combustion noise (CN) was at an unacceptable level.
Technical Paper

Universal Diesel Engine Simulator (UniDES) 2nd Report: Prediction of Engine Performance in Transient Driving Cycle Using One Dimensional Engine Model

The aim of this research is to develop the diesel combustion simulation (UniDES: Universal Diesel Engine Simulator) that incorporates multiple-injection strategies and in-cylinder composition changes due to exhaust gas recirculation (EGR), and that is capable of high speed calculation. The model is based on a zero-dimensional (0D) cycle simulation, and represents a multiple-injection strategy using a multi-zone model and inhomogeneity using a probability density function (PDF) model. Therefore, the 0D cycle simulation also enables both high accuracy and high speed. This research considers application to actual development. To expand the applicability of the simulation, a model that accurately estimates nozzle sac pressure with various injection quantities and common rail pressures, a model that accounts for the effects of adjacent spray interaction, and a model that considers the NOx reduction phenomenon under high load conditions were added.
Technical Paper

Study on the Prediction of VOC Concentration in Vehicle Cabins (1) Investigation of Relationship between Toluene Concentrations and Evaluation Conditions using Interior Parts

The Japan Automobile Manufacturers Association (JAMA) has recommended the voluntary regulation of the levels of volatile organic compound (VOC) emissions from vehicles. However, initiatives to reduce these emissions further are being implemented in Japan to create a healthier and more comfortable environment within vehicles. In this study, it was attempted to estimate the observable amounts of VOC emitted from products used in vehicles based on the actual emission of VOC from the products components. The VOC we focused on was toluene. The amounts of toluene volatilizing from the components of a disassembled vehicular product were measured and tested whether a simple sum of these values could be used to predict the amount of toluene emitted from the whole product. However, it was found this predicted value deviated significantly from the actual amount of toluene emitted from the product.
Technical Paper

Study on the Prediction of VOC Concentration in Vehicle Cabins (2) Development of Labeled Compound Addition Method

The purpose of this study is to construct a method to predict vehicle cabin VOC (volatile organic compounds) concentration. Several methods have been used previously to evaluate VOC emission from interior parts and materials (e.g., sampling bag method, 1 m3 chamber method). However, measurement conditions vary depending on the method used, making it difficult to predict vehicle cabin VOC concentration from the VOC values evaluated for component parts. In this paper, we focused on measurement of toluene concentration using the bag method and investigated the relationship between VOC emissions and measurement conditions. We assumed that the amount of VOC contained in the parts (RA) and the adsorptive capacity of the parts (K) can describe the VOC amount obtained (RG) when the VOC concentration in the bag reaches equilibrium. We developed a novel method incorporating a labeled compound to predict RA and K.
Technical Paper

Dual-Fuel PCI Combustion Controlled by In-Cylinder Stratification of Ignitability

A concept of dual-fuel, Premixed Compression Ignition (PCI) combustion controlled by two fuels with different ignitability has been developed to achieve drastically low NOx and smoke emissions. In this system, isooctane, which was used to represent high-octane gasoline, was supplied from an intake port and diesel fuel was injected directly into an engine cylinder at early timing as ignition trigger. It was found that the ignition timing of this PCI combustion can be controlled by changing the ratio of amounts of injected two fuels and combustion proceeds very mildly by making spatial stratifications of ignitability in the cylinder even without EGR, as preventing the whole mixture from igniting simultaneously. The operable range of load, where NOx and smoke were less than 10ppm and 0.1 FSN, respectively, was extended up to 1.2MPa of IMEP using an intake air boosting system together with dual fueling.
Technical Paper

Fuel Effects on Particulate Emissions from D.I. Engines - Precise Analyses and Evaluation of Diesel Fuel

Precise analytical methods for characterizing diesel fuel yielding the lowest particulate emissions were developed. The methods consist of preparative-scale high pressure liquid chromatography (HPLC), field ionization mass spectrometry (FIMS), analytical-scale HPLC, and carbon-13 nuclear magnetic resonance spectrometry (13C-NMR). A diesel fuel was first separated into an aliphatic fraction and an aromatic fraction by semipreparative-scale HPLC. Then, the aliphatic fraction was analyzed by FIMS and the spectrum was compared with that of the whole fuel. The aromatic fraction was analyzed by analytical-scale HPLC to obtain the chromatogram of the aromatic hydrocarbons with a high S/N. In addition to these analyses, the fuel was analyzed by 13C-NMR to obtain the concentration of the carbon atoms of the straight chain, branched chain and aromatic-ring in hydrocarbons.
Technical Paper

Research and Development of a New Direct Injection Gasoline Engine

A new stratified charge combustion system has been developed for direct injection gasoline engines. The special feature of this system is employment of a thin fan-shaped fuel spray formed by a slit nozzle. The stratified mixture is produced by the combination of this fan-spray and a shell-shaped piston cavity. Both under-mixing and over-mixing of fuel in the stratified mixture is reduced by this system. This combustion system does not require distinct charge motion such as tumble or swirl, which enables intake port geometry to be simplified to improve full load performance. The effects of the new system on engine performance at part load are improved fuel consumption and reduced smoke, CO and HC emissions, obviously at medium load and medium engine speed. HC emissions at light load are also improved even with high EGR conditions.
Technical Paper

Study of Future Engine Oil (First Report): Future Engine Oil Scenario

In recent years, problems such as global warming, the depletion of natural resources, and air pollution caused by emissions are emerging on a global scale. These problems call for efforts directed toward the development of fuel-efficient engines and exhaust gas reduction measures. As a solution to these issues, performance improvements should be achieved on the oil that lubricates the sliding sections of engines. This report points to features required of future engine oil-such as contribution to fuel consumption, minimized adverse effects on the exhaust gas aftertreatment system, and improved reliability achieved by sludge reduction-and discusses the significance of these features. For engine oil to contribution of engine oil to lower fuel consumption, we examined the effects of reduced oil viscosity on friction using gasoline and diesel engines.
Technical Paper

Recycling Technology of Surface Material for Interior Trims

Two-layered surface materials composed of a thermoplastic olefin elastomer (TPO) skin and a cross-linked polypropylene (PP)foam are increasingly replacing the conventional PVC skin/PVC foam for interior trims. In the past, recycled material obtained by melt-blending TPO skin and PP foam could not be re-used for TPO skin because of its appearance. A new recycling technology using the reaction biaxial extruder with a reaction agent can decompose the network structure of PP foam. As a result, PP foam is dispersed into TPO uniformly and the recycled material has properties and an appearance similar to virgin TPO. These new properties may allow the application of the recycled material as a surface material.
Technical Paper

Development of High Performance Three-Way-Catalyst

In conventional gasoline engine vehicles, three-way catalysts are used to simultaneously remove HC, CO and NOx from the exhaust gas. The effectiveness of the catalyst to remove these harmful species depends strongly on the oxygen concentration in the exhaust gas. Deterioration of three-way catalyst results in a reduction in its purification activity and OSC (oxygen storage capacity). In this investigation, additive elements were used to enhance the durability and OSC of the catalyst support material. An optimized formulation of a CeO2-ZrO2 and a ZrO2 material was developed to have excellent durability, improved OSC, enhanced interaction between precious metals and support materials, and increase thermal stability. Using these newly developed support materials, catalysts with increased performance was designed.