Refine Your Search

Topic

Author

Search Results

Journal Article

Development of Engine Lubrication System with New Internal Gear Fully Variable Discharge Oil Pump

2017-10-08
2017-01-2431
Over the past decades, the automotive industry has made significant efforts to improve engine fuel economy by reducing mechanical friction. Reducing friction under cold conditions is becoming more important in hybrid vehicle (HV) and plug-in hybrid vehicle (PHV) systems due to the lower oil temperatures of these systems, which results in higher friction loss. To help resolve this issue, a new internal gear fully variable discharge oil pump (F-VDOP) was developed. This new oil pump can control the oil pressure freely over a temperature range from -10°C to hot conditions. At 20°C, this pump lowers the minimum main gallery pressure to 100 kPa, thereby achieving a friction reduction effect of 1.4 Nm. The developed oil pump achieves a pressure response time constant of 0.17 seconds when changing the oil pressure from 120 kPa to 200 kPa at a temperature of 20°C and an engine speed of 1,600 rpm.
Technical Paper

Development of Robust Design Method in Pedestrian Impact Test

2007-04-16
2007-01-0881
This paper describes that a method has been developed to estimate the range of the scatter of Head Injury Criterion (HIC) values in pedestrian impact tests, which could help to reduce the range of the scatter of HIC values by applying the stochastic method for Finite Element (FE) analysis. A major advantage of this method is that it enables the range of scatter of HIC values to be estimated and to explain the mechanics of the behavior. The test procedure of pedestrian impact allows some tolerances for the resultant conditions of impact such that the distance of actual impact location from the selected point is within 10 mm and the impact velocity is within ±0.7 km/h [1]. A HIC value calculated by impact simulation under a deterministic impact condition with the nominal input data does not necessarily represent the variation of measured data in impactor tests.
Technical Paper

Study of Vehicle-to-Vehicle Collision Performance Based on Balance of Front End Strength

2007-04-16
2007-01-1175
Compatibility in vehicles crashes has been studied worldwide in recent years. In cases where primary energy-absorbing structures such as front end members were bypassed in front-to-front collisions, energy-absorbing efficiency declined compared to cases when no such bypassing occurred. A bumper beam that connects the front end members in the transverse direction can help prevent bypassing of primary energy-absorbing structures. The strength balance between front end members and a bumper beam was studied in this paper. It was verified in front-to-front offset vehicle collision tests that crash energy can be efficiently absorbed by balancing the strength of the bumper beam with the compression strength of the front end members.
Technical Paper

V6-SUV Engine Sound Development

2009-05-19
2009-01-2177
This paper describes the development and achievement of a target engine sound for a V6 SUV in consideration of the sound quality preferences of customers in the U.S. First, a simple definition for engine sound under acceleration was found using order arrangement, frequency balance, and linearity. These elements are the product of commonly used characteristics in conventional development and can be applied simply when setting component targets. The development focused on order arrangement as the most important of these elements, and sounds with and without integer orders were selected as target candidates. Next, subjective auditory evaluations were performed in the U.S. using digitally processed sounds and an evaluation panel comprising roughly 40 subjects. The target sound was determined after classifying the results of this evaluation using cluster analysis.
Technical Paper

Development and Application of an Enhanced SID-IIs Dummy for Analyzing Side Impact Kinematics

2009-04-20
2009-01-1432
Due to the relative high speed and short distance between the door and occupant, side impact presents a challenging task when analyzing the input force from the door to the occupant. The new FMVSS214 Final Rule in 2007 and the new NCAP in 2008 mandated the use of a SID-IIs in the oblique pole impact test and in the rear seat during an MDB side impact test. Therefore, a high-precision measurement and calculation of the three-dimensional dummy kinematics, as well as the interaction of force inside the dummy (internal force) and force exerted from outside the dummy (external force) will help provide efficient evaluation of design requirements for the door trim and supplemental restraint systems that meet legally mandated requirements.
Technical Paper

A Study of Mixed-FAME and Trace Component Effects on the Filter Blocking Propensity of FAME and FAME Blends

2010-10-25
2010-01-2116
Previous studies have investigated the impacts of biofuel usage on the performance, drivability and durability of modern diesel engines and exhaust after-treatment systems including test work with different types, concentrations and mixtures of bio fuel components. During this earlier work vehicle fuel filter blocking issues were encountered during a field trial using various types of EN 14214 compliant Fatty Acid Methyl Ester (FAME) blended into EN 590 diesel. This paper summarises a subsequent literature review that was carried out looking into potential causes of this filter blocking and further work that was then carried out to expand on the findings. From this, a laboratory study was carried out to assess the increase in fuel filter blocking tendency (FBT) when various FAMEs from mixed sources were blended into EN 590 diesel at different concentrations, including levels above those currently allowed in the European market.
Technical Paper

Joining Technologies for Aluminum Body-Improvement of Self-piercing Riveting

2003-10-27
2003-01-2788
The experimental research vehicle ES3 body was realized by using various aluminum-joining technologies: MIG welding, laser welding, self-piercing riveting. These technologies were applied selectively to make full use of their individual characteristics, according to the body structure and joined materials. Of these technologies, self-piercing riveting is advantageous in several respects. Aiming to expand the application range of riveting technology, we developed a die that prevents cracks in joining aluminum casting, and a method to improve rivet driving in thick, multi-pile portion. We further studied the feasibility of aluminum rivets. This paper outlines the ES3 body structure and it's joining technologies used and introduces the further improvements we developed concerning self-piercing riveting.
Technical Paper

A Study of Car Body Structure to Reduce Environmental Burdens

2003-10-27
2003-01-2833
In the initial design stage, it is important to discuss what kind of body concept is effective from a viewpoint of environment burden reduction. This paper describes the importance of both weight reduction and recycling through conducting LCA (Life Cycle Assessment) for four kinds of body structures. In addition, using each software, DFMA (Design for Manufacture and Assembly), DFE (Design for Environment) and LCA to parts unit, each effectiveness was discussed through the assessment of the material-hybrid body.
Technical Paper

Analysis of FEM Results Based upon FOA

2004-03-08
2004-01-1729
In FOA (First Order Analysis) any vehicle body structure might be interpreted as a collective simple structure that can be decomposed into 3 fundamental structure types. The first structure is the “BEAM”, whose cross sectional properties as well as its material dominates the mechanical behavior, the second is the “PANEL (shear panel, plate, and shell)”, whose mechanical behavior can be varied by changing its geometrical properties in the thickness direction, i.e. adding beads or flanges. The third structure is the “JOINT”, which connects the proceeding structures, and transfer complex three-dimensional loads with three-dimensional deformation. In the present work, we shall propose a methodology to identify a portion of an arbitrary FE model of an automotive body structure, with a “BEAM” structure in the FOA approach. In the latter chapter of this paper, cross section loads will be related with cross sectional properties in the aspect of the element strain energy concept.
Technical Paper

Low Frequency Airborne Panel Contribution Analysis and Vehicle Body Sensitivity to Exhaust Nnoise

2017-06-05
2017-01-1865
The tendency for car engines to reduce the cylinder number and increase the specific torque at low rpm has led to significantly higher levels of low frequency pulsation from the exhaust tailpipe. This is a challenge for exhaust system design, and equally for body design and vehicle integration. The low frequency panel noise contributions were identified using pressure transmissibility and operational sound pressure on the exterior. For this the body was divided into patches. For all patches the pressure transmissibility across the body panels into the interior was measured as well as the sound field over the entire surface of the vehicle body. The panel contributions, the pressure distribution and transmissibility distribution information were combined with acoustic modal analysis in the cabin, providing a better understanding of the airborne transfer.
Technical Paper

Optimizing Transmission Loss for Lightweight Body Structures

2017-06-05
2017-01-1812
In an effort to reduce mass, future automotive bodies will feature lower gage steel or lighter weight materials such as aluminum. An unfortunate side effect of lighter weight bodies is a reduction in sound transmission loss (TL). For barrier based systems, as the total system mass (including the sheet metal, decoupler, and barrier) goes down the transmission loss is reduced. If the reduced surface density from the sheet metal is added to the barrier, however, performance can be restored (though, of course, this eliminates the mass savings). In fact, if all of the saved mass from the sheet metal is added to the barrier, the TL performance may be improved over the original system. This is because the optimum performance for a barrier based system is achieved when the sheet metal and the barrier have equal surface densities. That is not the case for standard steel constructions where the surface density of the sheet metal is higher than the barrier.
Technical Paper

Vehicle Interior Noise and Vibration Reduction Method Using Transfer Function of Body Structure

2011-05-17
2011-01-1692
To reduce interior noise effectively in the vehicle body structure development process, noise and vibration engineers have to first identify the portions of the body that have high sensitivity. Second, the necessary vibration characteristics of each portion must be determined, and third, the appropriate body structure for achieving the target performance of the vehicle must be realized within a short development timeframe. This paper proposes a new method based on the substructure synthesis method which is effective up to 200Hz. This method primarily utilizes equations expressing the relationship between driving point inertance change at arbitrary body portions and the corresponding sound pressure level (SPL) variation at the occupant's ear positions under external force. A modified system equation was derived from the body transfer functions and equation of motion by adding a virtual dynamic stiffness expression into the dynamic stiffness matrix of the vehicle.
Technical Paper

Development of Side Impact Dummy FE Models using Reverse Engineering

2012-04-16
2012-01-0091
This paper describes the development of dummy FE models to be used for side impact simulations. The precise geometries of the ES-2re dummy and the SID-IIs dummy were measured at a pitch of 1.0 mm using X-ray CT scan. The material properties and the mechanical responses of the components were measured in static and dynamic tests and were used for the model validation. The models were further validated to US-NCAP side impact requirements. Good correlation was seen for both response time history, and to peak deformation values. It is shown that modeling the precise dummy internal structure in addition to the external geometry and applying accurate material properties enabled simulation of deformation kinematics and load transfer inside the dummies. As a result, it was possible to accurately simulate the injury value time histories in an actual test, and understand the mechanisms causing changes to the loading.
Technical Paper

Trends of Future Powertrain Development and the Evolution of Powertrain Control Systems

2004-10-18
2004-21-0063
High fuel efficiency and low emission technologies, such as Direct Injection (DI) gasoline and diesel engines and hybrid powertrains, have been developed to resolve environmental and energy resource issues. The hybrid powertrain system has achieved superior power performance as well as higher system efficiency and is expected to be a core powertrain technology because it is compatible with various power sources including fuel cells. It becomes important to control complicated hybrid systems that consist of not only a powertrain but also vehicle systems such as regenerative braking. Model-based control and calibration enables both control strategy optimization and control system development efficiency improvement.
Technical Paper

Development of Automatic Door Lock System to Help Prevent Collisions between Opened Doors and Approaching Vehicles When Exiting Vehicle

2022-03-29
2022-01-0068
Collisions between opened doors and approaching vehicles such as bicycles are common occurrences in urban areas around the world. For example, in Chicago, 20% of all bicycle accidents involve collisions with doors, which occur over 300 times a year. In addition, there are concerns about a further rise in accidents due to the recent increase in home delivery services and bicycle commuting during the COVID-19 pandemic. Some advanced driver assistance systems (ADAS) that are designed to help prevent this type of accident have already been introduced. These systems detect approaching vehicles with sensors and alert the person opening the door via LED lights or a buzzer when the door is opened. The occupant must understand the meaning of the alert and stop opening the door quickly to prevent an accident. However, if the occupant is an elderly person or a child, it is difficult to stop opening the door quickly.
Technical Paper

Application of Soap Film Geometry for Low Noise Floor Panels

1999-05-17
1999-01-1799
A method for applying soap film geometry to an automobile body structure has been developed. Its curved surface reduce both interior noise and damping material application because of its high rigidity and uneven deformation mode. This paper demonstrates these mechanism, benchmarks their performance with conventional flat and bead panels and presents an application to the floor panel of an automobile body.
Technical Paper

Solar Module Laminated Constitution for Automobiles

2016-04-05
2016-01-0351
Replacing the metal car roof with conventional solar modules results in the increase of total car weight and change of center of mass, which is not preferable for car designing. Therefore, weight reduction is required for solar modules to be equipped on vehicles. Exchanging glass to plastic for the cover plate of solar module is one of the major approaches to reduce weight; however, load bearing property, impact resistance, thermal deformation, and weatherability become new challenges. In this paper a new solar module structure that weighs as light as conventional steel car roofs, resolving these challenges is proposed.
Technical Paper

Development of Thermoplastic CFRP for Stack Frame

2016-04-05
2016-01-0532
Weight reduction for a fuel cell vehicle (FCV) is important to contribute a long driving range. One approach to reduce vehicle weight involves using a carbon fiber reinforced plastic (CFRP) which has a high specific strength and stiffness. However, a conventional thermoset CFRP requires a long chemical reaction time and it is not easy to introduce into mass production vehicles. In this study, a new compression-moldable thermoplastic CFRP material for mass production body structural parts was developed and applied to the stack frame of the Toyota Mirai.
Technical Paper

Hybrid Vehicles Lessons Learned and Future Prospects

2006-10-16
2006-21-0027
There exist many environmental and earth resource problems to be solved for the 21st century. Hybridization of both internal combustion powertrains and fuel cell powertrains holds great promise for next generation vehicles. This paper describes the lessons learned during design, development, production and marketing of nearly 700,000 hybrid vehicles to date. We review the evolution of major components with a focus on reducing cost, mass and volume while increasing power and efficiency. We also describe the future prospects for hybrid vehicles.
Technical Paper

Achievements and Exploitation of the AUTOSAR Development Partnership

2006-10-16
2006-21-0019
Reductions of hardware costs as well as implementations of new innovative functions are the main drivers of today's automotive electronics. Indeed more and more resources are spent on adapting existing solutions to different environments. At the same time, due to the increasing number of networked components, a level of complexity has been reached which is difficult to handle using traditional development processes. The automotive industry addresses this problem through a paradigm shift from a hardware-, component-driven to a requirement- and function-driven development process, and a stringent standardization of infrastructure elements. One central standardization initiative is the AUTomotive Open System ARchitecture (AUTOSAR). AUTOSAR was founded in 2003 by major OEMs and Tier1 suppliers and now includes a large number of automotive, electronics, semiconductor, hard- and software companies.
X