Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Mixing Effects of Early Injection in Diesel Spray Using LES Model with Different Subgrid Scale Models

Early injection timing is an effective measure of pre-mixture formation for diesel low-temperature combustion. Three algebraic subgrid models (Smagorinsky model, dynamic Smagorinsky model and WALE model) and one-equation kinetic energy turbulent model using modified TAB breakup model (MTAB model) have been implemented into KIVA3V code to make a detailed large eddy simulation of the atomization and evaporation processes of early injection timing in a constant volume chamber and a Ford high-speed direct-injection diesel engine. The results show that the predictive vapor mass fraction and liquid penetration using LES is in good agreement with the experiment results. In combustion chamber, the sub-grid turbulent kinetic energy and viscosity using LES are less than with the RANS models, and following the increasing time, the sub-grid turbulent kinetic energy and viscosity also increase and are concentrated on the spray area.
Technical Paper

Numerical Study of Pressure Swirl Spray Using an Improved KIVALES with Dense Grid for GDI Engine

Gasoline direct injection engines can greatly improve the fuel economy, but the idea mixture distribution cannot be easily controlled. In this paper, the linearized instability sheet atomization (LISA) and large eddy simulation (LES) implemented into KIVA-3V code were used to study the gasoline hollow cone spray process for gasoline direct injection (GDI) in a constant volume vessel. The three-dimensional results show that the LISA model can effectively simulate the gasoline hollow cone spray and obtain the string structure compared to the experiment data. And the velocity interpolation method can reduce the grid dependency of spray simulation. Using dense grid (about 8 million cells) in LES and RANS all can obtain the good spray tip penetration and width. Unlike diesel spray, for gasoline spray there are not big difference between the results using LES and RANS. In additional the ambient pressure significantly influence the gasoline spray shape.
Technical Paper

Large Eddy Simulation of Liquid Fuel Spray and Combustion with Gradually Varying Grid

In this work, large eddy simulation (LES) with a K-equation subgrid turbulent kinetic energy model is implemented into the CFD code KIVA3V to study the features of liquid fuel spray and combustion using gradually varying grid in a constant volume chamber. The characteristic time-scale combustion model (CTC) incorporating a turbulent timescale is adopted to predict the combustion process and the SHELL auto-ignition model is used to predict auto-ignition. Combustion is also simulated using Parallel Detailed Chemistry with Lu's n-heptane reduced mechanism (58 species), which has been added into the KIVA3V-LES code. The computational results are compared with Sandia experimental data for non-reacting and reacting cases. As a result, LES can capture the complex structure of the spray and temperature distribution as well as the trend of ignition delay and flame lift-off length variations. Better results are obtained using the Parallel Detailed Chemistry than the CTC model.