Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Emergency Steering Evasion Control by Combining the Yaw Moment with Steering Assistance

2018-04-03
2018-01-0818
The coordinated control of stability and steering systems in collision avoidance steering evasion has been widely studied in vehicle active safety area, but the studies are mainly aimed at autonomous vehicle without driver or conventional combustion engine vehicle. This paper focuses on the control of hybrid vehicle integrated with rear hub in emergency steering evasion situation, and considering the driver’s characteristics. First, the mathematics model of vehicle dynamics and driver has been given. Second, based on the planned steering evasion path, the model predictive control method is presented for achieving higher evasion path tracking accuracy under driver’s steering input. The prediction model includes an adaptive preview distance driver model and a vehicle dynamics model to predict the driver input and the vehicle trajectory.
Technical Paper

A Novel Three-Planetary-Gear Power-Split Hybrid Powertrain for Tracked Vehicles

2018-04-03
2018-01-1003
Tracked vehicles are widely used for agriculture, construction and many other areas. Due to high emissions, hybrid electric driveline has been applied to tracked vehicles. The hybrid powertrain design for the tracked vehicle has been researched for years. Different from wheeled vehicles, the tracked vehicle not only requires high mobility while straight driving, but also pursues strong steering performance. The paper takes the hybrid track-type dozers (TTDs) as an example and proposes an optimal design of a novel power-split powertrain for TTDs. The commercial hybrid TTD usually adopts the series hybrid powertrain, and sometimes with an extra steering mechanism, which has led to low efficiency and made the structure more complicated. The proposed three-planetary-gear power-split hybrid powertrain can overcome the problems above by utilizing the characteristics of planetary gear sets.
Technical Paper

Estimation of Road-Tire Friction with Unscented Kalman Filter and MSE-Weighted Fusion based on a Modified Dugoff Tire Model

2015-04-14
2015-01-1601
This paper proposes an estimation method of road-tire friction coefficient for the 4WID EV(4-wheel-independent-drive electric vehicle) in the pure longitudinal wheel slip, lateral sideslip and combined slip situations, which fuses both estimated longitudinal and lateral friction coefficients together, compared with existing methods based on a tire model in one single direction. Unscented Kalman filter (UKF) is introduced to estimate one-directional friction coefficient based on a modified Dugoff tire model. Considering the output results for each direction as a signal for the same target with different noise, MSE-weighted fusion method is proposed to fuse these two results together in order to reach a higher accuracy. The tire forces are estimated with the benefits of the 4WID EV that the driving torque and rolling speed of each wheel can be accurately known. The sideslip angles and slip ratios of each tire are calculated with a vehicle kinematic model.
Technical Paper

A Dynamic Model for Tire/Road Friction Estimation under Combined Longitudinal/Lateral Slip Situation

2014-04-01
2014-01-0123
A new dynamic tire model for estimating the longitudinal/lateral road-tire friction force was derived in this paper. The model was based on the previous Dugoff tire model, in consideration of its drawback that it does not reflect the actual change trend that the tire friction force decreases with the increment of wheel slip ratio when it enters into the nonlinear region. The Dugoff model was modified by fitting a series of tire force data and compared with the commonly used Magic Formula model. This new dynamic friction model is able to capture accurately the transient behavior of the friction force observed during pure longitudinal wheel slip, lateral sideslip and combined slip situation. Simulation has been done under different situations, while the results validate the accuracy of the new tire friction model in predicting tire/road friction force during transient vehicle motion.
Technical Paper

Effects of Human Adaptation and Trust on Shared Control for Driver-Automation Cooperative Driving

2017-09-23
2017-01-1987
Vehicle automation is a fundamental approach to reduce traffic accidents and driver workload. However, there is a notable risk of pushing human drivers out of the control loop before automation technology fully matures. Cooperative driving (or vehicle co-piloting) is a novel paradigm which is defined as the vehicle being jointly navigated by a human driver and an automatic controller through shared control technology. Indirect shared control is an emerging shared control method, which is able to realize cooperative driving through input complementation instead of haptic guidance. In this paper we first establish an indirect shared control method, in which the driver’s commanded input and the controller’s desired input are balanced with a weighted summation. Thereafter, we propose a predictive model to capture driver adaptation and trust in indirect shared control.
Technical Paper

An Empirical Model For Longitudinal Tire-Road Friction Estimation

2004-03-08
2004-01-1082
It's important to monitor the longitudinal friction at the tire/road interface for automotive dynamic control systems like ABS and ASR. Of all the tire friction models the empirical model provides a good illustration on longitudinal wheel forces. An improved exponential friction model based on vehicle driving states was proposed in this paper, the model can monitor the friction characteristics between the tire and road surface for longitudinal braking. Its validity was proven using experiments and comparison with the Pacejka Magic Formula (MF) model and others.
Journal Article

A New Method for Bus Drivers' Economic Efficiency Assessment

2015-09-29
2015-01-2843
Transport vehicles consume a large amount of fuel with low efficiency, which is significantly affected by drivers' behaviors. An assessment system of eco-driving pattern for buses could identify the deficiencies of driver operation as well as assist transportation enterprises in driver management. This paper proposes an assessment method regarding drivers' economic efficiency, considering driving conditions. To this end, assessment indexes are extracted from driving economy theories and ranked according to their effect on fuel consumption, derived from a database of 135 buses using multiple regression. A layered structure of assessment indexes is developed with application of AHP, and the weight of each index is estimated. The driving pattern score could be calculated with these weights.
Technical Paper

A Trajectory-Based Method for Scenario Analysis and Test Effort Reduction for Highly Automated Vehicle

2019-04-02
2019-01-0139
Unlike the test of passive safety of traditional vehicles, highly automated vehicles (HAV) need more capabilities to be tested. Besides, there are more parameter combinations for the scenarios that need to be tested for each capability, resulting in a high time-consuming and costs for the autonomous vehicle tests. This paper proposes a method for scenario analysis and test effort reduction. Firstly, the trajectories of the vehicle under test (VUT) in the scenario are analyzed, and the trajectories which lead to the test mission failure are obtained. Based on the above trajectories, the threshold that lead to the test mission failure, or a combination of thresholds are analyzed. The above thresholds or a combination of thresholds values are defined as Scenario Character Parameter (SCP). The process of the analysis of the SCPs are related to the abilities of the HAV, but does not depend on the specific algorithm of the HAV.
X