Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Mission-based Design Space Exploration for Powertrain Electrification of Series Plugin Hybrid Electric Delivery Truck

Hybrid electric vehicles (HEV) are essential for reducing fuel consumption and emissions. However, when analyzing different segments of the transportation industry, for example, public transportation or different sizes of delivery trucks and how the HEV are used, it is clear that one powertrain may not be optimal in all situations. Choosing a hybrid powertrain architecture and proper component sizes for different applications is an important task to find the optimal trade-off between fuel economy, drivability, and vehicle cost. However, exploring and evaluating all possible architectures and component sizes is a time-consuming task. A search algorithm, using Gaussian Processes, is proposed that simultaneously explores multiple architecture options, to identify the Pareto-optimal solutions.
Technical Paper

Fuel Consumption Analysis and Optimizing of a Heavy Duty Dual Motor Coaxial Series-Parallel Hybrid Lorry under C-WTVC

Energy saving is becoming one of the most important issues for the next generation of commercial vehicles. The fuel consumption limits for commercial vehicles in China have stepped into the third stage, which is a great challenge for heavy duty commercial vehicles. Hybrid technology provides a promising method to solve this problem, of which the dual motor coaxial series parallel configuration is one of the best options. Compared with parallel configuration, the powertrain can not only operate in pure electric or parallel mode, but also can operate in series mode, which shows better flexibility. In this paper, regulations on test cycle, fuel consumption limits and calculation method of the third stage will be introduced in detail. Then, the quasi-static models of the coaxial series parallel powertrain with/without gearbox under C-WTVC (China worldwide transient vehicle cycle) are built. The control strategies are designed based on engine and motor performance.
Technical Paper

A New Type of Electro-Hydraulic Power Steering System for Heavy-Duty Commercial Vehicles

The earth's fossil energy is not limitless, and we should be taking advantage of the highly developed fields of science and technology to utilize it more efficiently and to create a fully environmentally friendly life. Considering the prodigious amount of vehicles in the world today, even a small improvement in their energy-saving performance could have a significant impact. In this paper, a new type of electro-hydraulic power steering (EHPS) system is described. It has two main advantages. First, it can significantly decrease the demand on the motor so that it can be used for a wider range of vehicles. Second, its pressure-flow characteristic can be programmed and is more flexible than hydraulic power steering (HPS) system. A prototype with a 500 W motor was applied to a truck with a front load of 2,700 kg, and static steer sweep tests were conducted to validate its feasibility.
Technical Paper

Design and Analysis of Parallel Hybrid Electric Vehicles for Heavy-Duty Truck Applications in a Total Cost of Ownership Framework

Due to the potential on decreasing fuel consumption and design flexibility, parallel configurations are widely used for hybrid electric vehicles (HEVs). However, the fuel economy and economic profitability of parallel HEVs for heavy-duty truck applications under Chinese driving conditions still need to be investigated. It is uneasy to improve the fuel economy of parallel HEVs with a single electric motor from control perspective only. In this article, the battery size of the architecture is optimized by using the dynamic programming (DP) approach, based on a dynamic degradation model of the LiFePO4 battery. Moreover, based on the DP results, a near-optimal control strategy of the hybrid powertrain system for online application is proposed. Finally, with two economic assumptions, the initial costs, operation costs, and payback periods are obtained in a total cost of ownership framework perspective.