Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

Research on Vehicle Stability Control Strategy Based on Integrated-Electro-Hydraulic Brake System

2017-03-28
2017-01-1565
A vehicle dynamics stability control system based on integrated-electro-hydraulic brake (I-EHB) system with hierarchical control architecture and nonlinear control method is designed to improve the vehicle dynamics stability under extreme conditions in this paper. The I-EHB system is a novel brake-by-wire system, and is suitable to the development demands of intelligent vehicle technology and new energy vehicle technology. Four inlet valves and four outlet valves are added to the layout of a conventional four-channel hydraulic control unit. A permanent-magnet synchronous motor (PMSM) provides a stabilized high-pressure source in the master cylinder, and the four-channel hydraulic control unit ensures that the pressures in each wheel cylinder can be modulated separately at a high precision. Besides, the functions of Anti-lock Braking System, Traction Control System and Regenerative Braking System, Autonomous Emergency Braking can be integrated in this brake-by-wire system.
Technical Paper

Emergency Steering Evasion Control by Combining the Yaw Moment with Steering Assistance

2018-04-03
2018-01-0818
The coordinated control of stability and steering systems in collision avoidance steering evasion has been widely studied in vehicle active safety area, but the studies are mainly aimed at autonomous vehicle without driver or conventional combustion engine vehicle. This paper focuses on the control of hybrid vehicle integrated with rear hub in emergency steering evasion situation, and considering the driver’s characteristics. First, the mathematics model of vehicle dynamics and driver has been given. Second, based on the planned steering evasion path, the model predictive control method is presented for achieving higher evasion path tracking accuracy under driver’s steering input. The prediction model includes an adaptive preview distance driver model and a vehicle dynamics model to predict the driver input and the vehicle trajectory.
Technical Paper

Design Optimization of the Transmission System for Electric Vehicles Considering the Dynamic Efficiency of the Regenerative Brake

2018-04-03
2018-01-0819
In this paper, gear ratios of a two-speed transmission system are optimized for an electric passenger car. Quasi static system models, including the vehicle model, the motor, the battery, the transmission system, and drive cycles are established in MATLAB/Simulink at first. Specifically, since the regenerative braking capability of the motor is affected by the SoC of battery and motors torque limitation in real time, the dynamical variation of the regenerative brake efficiency is considered in this study. To obtain the optimal gear ratios, iterations are carried out through Nelder-Mead algorithm under constraints in MATLAB/Simulink. During the optimization process, the motor efficiency is observed along with the drive cycle, and the gear shift strategy is determined based on the vehicle velocity and acceleration demand. Simulation results show that the electric motor works in a relative high efficiency range during the whole drive cycle.
Technical Paper

A Control Oriented Simplified Transient Torque Model of Turbocharged Diesel Engines

2008-06-23
2008-01-1708
Due to the high cost of torque sensors, a calculation model of transient torque is required for real-time coordinating control purpose, especially in hybrid electric powertrains. This paper presents a feedforward calculation method based on mean value model of turbocharged non-EGR diesel engines. A fitting variable called fuel coefficient is defined in an affine relation between brake torque and fuel mass. The fitting of fuel coefficient is simplified to depend only on three variables (engine speed, boost pressure, injected fuel mass). And a two-layer feedforward neural network is utilized to fit the experimental data. The model is validated by load response test and ETC (European Transient Cycle) transient test. The RMSE (root mean square error) of the brake torque is less than 3%.
Technical Paper

Design, Testing and Analysis of a Novel Multiple-Disc Magnetorheological Braking Applied in Vehicles

2015-04-14
2015-01-0724
This paper presents a new magnetorheological braking which can be used in vehicles. Magneto-rheological (MR) fluid is a novel material which can be used in different components of vehicle. Magneto-rheological fluids (MRF) are suspensions of micron size whose yield stress varies rapidly as the change of magnetic field. The use of MRF in vehicles has been gaining popular recently due to its strong rheological effect, fast response and low energy consumption. Besides, these performances give designers more choice in automotive designs. However, most of the related research of MRF brake is about the construction of small prototype to verify its rheological performance. As a result, research progress is limited to calculation and simulation which make the braking force of prototype can hardly meet the requirement of vehicle due to a lack of optimal design and the understanding of MRF in the situation of high sheer stress and magnetic field.
Technical Paper

DEHB (Distributed Electro-hydraulic Braking System) Having a Holding Function

2015-03-10
2015-01-0017
Many types of brake by wire systems have been developed in past years, such as EMB (Electro-mechanical Brake) [1, 2], DEHB (Distributed Electro-hydraulic Braking System) [3] and EWB (Electric Wedge Brake) [4]. When the vehicle need braking in long period such as waiting for traffic light or downhill braking in those brake systems, the current will sustain very long time with very high level. This current will result in high temperature in motor, and will damage the power supplier. When a new DEHB is developing, a holding function is added in this DEHB. The holding function is self-energized when holding the brake, and automatic released after the brake. Advantageously, after activation of the holding function, the current delivered to the motor for braking is substantially decreased, especially, will be zero when the brake torque is not need to adjust.
Technical Paper

Analysis of Energy Consumption on Typical Main Cylinder Booster Based Brake-by-Wire System

2016-09-18
2016-01-1955
The traditional vacuum booster is gradually replaced by Brake-by-Wire system (BBW) in modern passenger car, especially Electric Vehicle (EV). Some mechanical and hydraulic components are replaced by electronic components in Brake-by-Wire system. Using BBW system in modern passenger vehicles can not only improve the automotive safety performance, reliability and stability, but also promote vehicle maneuverability, comfort, fuel economy and environmental protection. Although vehicle's braking performance is greatly improved by using BBW, the system will inevitably consume some energy of the vehicle power supply, thus introducing unexpected drawback in comparison with the traditional vacuum assist braking system, since it doesn't need any electric power. Therefore, the analysis of energy consumption on typical main cylinder booster based BBW system under typical driving cycles will contribute to advanced design of current advanced braking system.
Technical Paper

Regenerative Brake-by-Wire System Development and Hardware-In-Loop Test for Autonomous Electrified Vehicle

2017-03-28
2017-01-0401
As the essential of future driver assistance system, brake-by-wire system is capable of performing autonomous intervention to enhance vehicle safety significantly. Regenerative braking is the most effective technology of improving energy consumption of electrified vehicle. A novel brake-by-wire system scheme with integrated functions of active braking and regenerative braking, is proposed in this paper. Four pressure-difference-limit valves are added to conventional four-channel brake structure to fulfill more precise pressure modulation. Four independent isolating valves are adopted to cut off connections between brake pedal and wheel cylinders. Two stroke simulators are equipped to imitate conventional brake pedal feel. The operation principles of newly developed system are analyzed minutely according to different working modes. High fidelity models of subsystems are built in commercial software MATLAB and AMESim respectively.
Technical Paper

Autonomous Emergency Braking Control Based on Hierarchical Strategy Using Integrated-Electro-Hydraulic Brake System

2017-09-23
2017-01-1964
Highway traffic safety has been the most serious problem in current society, statistics show that about 70% to 90% of accidents are caused by driver operational errors. The autonomous emergency braking (AEB) is one of important vehicle intelligent safety technologies to avoid or mitigate collision. The AEB system applies the vehicle brakes when a collision is eminent in spite of any reaction by the driver. In some technologies, the system forewarns the driver with an acoustic signal when a collision is still avoidable, but subsequently applies the brakes automatically if the driver fails to respond. This paper presents the development and implementation of a rear-end collision avoidance system based on hierarchical control framework which consists of threat assessment layer, wheel slip ratio control layer and integrated-electro-hydraulic brake (IEHB) actuator control layer.
Technical Paper

Tire Force Fast Estimation Method for Vehicle Dynamics Stability Real Time Control

2007-10-30
2007-01-4244
A tire force estimation algorithm is proposed for vehicle dynamic stability control (DSC) system to protect the vehicle from deviation of the normal dynamics attitude and to realize the improved dynamics stability in limited driving conditions. The developed algorithm is based on the theoretical analysis of all the subsystems of the active brake control in DSC system and modulation in DSC, and the robustness is achieved by a compensation method using nonlinear filter in the real time control. The software-in-loop simulation using Matlab/AMEsim and the ground test in the real car show the validation of this method.
Technical Paper

Braking Force Identification of EMB Using Recursive Least-squares Method and Disturbance Observer Iteratively

2018-04-03
2018-01-1381
An identification method using recursive least-squares method with moving data window and reduced-order disturbance observer iteratively is proposed in this paper to identify fast time-varying braking force in the electronic mechanical braking system (EMB). For the type of EMB which generates braking force by balls screw and motor mounted beside wheel, the actuator will go rapidly to eliminate clearance at beginning of braking process by means of raising the braking response speed, and at the same time, increasing the motor output torque which might be far larger than required. The proposed identification method is able to identify the point of contact between the brake pads and the disk in time by identifying the change of break force, and the torque of motor will be changed in time to reduce the braking force overshoot so that brake locking is avoided.
Journal Article

On the Coupling Stiffness in Closed-Loop Coupling Disc Brake Model through Optimization

2015-04-14
2015-01-0668
The study and prevention of unstable vibration is a challenging task for vehicle industry. Improving predicting accuracy of braking squeal model is of great concern. Closed-loop coupling disc brake model is widely used in complex eigenvalue analysis and further analysis. The coupling stiffness of disc rotor and pads is one of the most important parameters in the model. But in most studies the stiffness is calculated by simple static force-deformation simulation. In this paper, a closed-loop coupling disc brake model is built. Initial values of coupling stiffness are estimated from static calculation. Experiment modal analysis of stationary disc brake system with brake line pressure and brake torques applied is conducted. Then an optimization process is initiated to minimize the differences between modal frequencies predicted by the stationary model and those from test. Thus model parameters more close to reality are found.
Journal Article

Modal Based Rotating Disc Model for Disc Brake Squeal

2015-04-14
2015-01-0665
Modelling of disc in brake squeal analysis is complicated because of the rotation of disc and the sliding contact between disc and pads. Many analytical or analytical numerical combined modeling methods have been developed considering the disc brake vibration and squeal as a moving load problem. Yet in the most common used complex eigenvalue analysis method, the moving load nature normally has been ignored. In this paper, a new modelling method for rotating disc from the point of view of modal is presented. First finite element model of stationary disc is built and modal parameters are calculated. Then the dynamic response of rotating disc which is excited and observed at spatial fixed positions is studied. The frequency response function is derived through space and time transformations. The equivalent modal parameter is extracted and expressed as the function of rotation speed and original stationary status modal parameters.
Technical Paper

The Differential Braking Steering Control of Special Purpose Flat-Bed Electric Vehicle

2019-04-02
2019-01-0440
Special purpose flat-bed vehicle is commonly utilized to move heavily items such as containers in warehouse, port and other freight handling scene, the hydraulic steering system have be gradually replaced by electric ones. However, the cost of electric steering system is high for commercial activities. Thus, for some corporates, the differential braking steering strategy becomes an ideal alternative. The purpose of this paper is to present a steering control method for flat-bed electric vehicle based on differential braking system. There are two main components of the control method, steering while moving forward and pivot steering, and each of them was composed by upper layer and executive layer. To evaluate the practicability of the control methods, a 7-DOF flat-bed vehicle model was established in Simulink.
Technical Paper

Active Steering and Anti-Roll Shared Control for Enhancing Roll Stability in Path Following of Autonomous Heavy Vehicle

2019-04-02
2019-01-0454
Rollover accident of heavy vehicle during cornering is a serious road safety problem worldwide. In the past decade, based on the active intervention into the heavy vehicle roll dynamics method, researches have proposed effective anti-roll control schemes to guarantee roll stability during cornering. Among those studies, however, roll stability control strategies are generally derived independent of front steering control inputs, the interactive control characteristic between steering and anti-roll system have not been thoroughly investigated. In this paper, a novel roll stability control structure that considers the interaction between steering and anti-roll system, is presented and discussed.
X