Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Analyzing Traffic Accident Causations in China Based on Neural Network Combined

Clarifying accident causations can provide a strong foundation to prevent traffic accidents and reduce severities. This paper uses Chinese government census data from 1996-2003[1∼8] and models a relationship between various kinds of traffic accident causations and the severities of the traffic accidents based on neural network combined (NNC). The paper adapts multi-folder cross validation concept to enhance the properties of NNC. It then conducts sensitivity analysis on the trained NNC to identify the prioritized importance of traffic accident causations as they are to the severities of traffic accident. Lastly, the results are validated and compared by the findings of previous researches.
Technical Paper

A Control Oriented Simplified Transient Torque Model of Turbocharged Diesel Engines

Due to the high cost of torque sensors, a calculation model of transient torque is required for real-time coordinating control purpose, especially in hybrid electric powertrains. This paper presents a feedforward calculation method based on mean value model of turbocharged non-EGR diesel engines. A fitting variable called fuel coefficient is defined in an affine relation between brake torque and fuel mass. The fitting of fuel coefficient is simplified to depend only on three variables (engine speed, boost pressure, injected fuel mass). And a two-layer feedforward neural network is utilized to fit the experimental data. The model is validated by load response test and ETC (European Transient Cycle) transient test. The RMSE (root mean square error) of the brake torque is less than 3%.
Technical Paper

Energetic Macroscopic Representation Based Energy Management Strategy for Hybrid Electric Vehicle Taking into Account Demand Power Optimization

To further explore the potential of fuel economy for hybrid electric vehicle (HEV), a methodology of demand power optimization is proposed. The fuel consumption depends not only on the EMS, but also on the way to operate vehicle. A control strategy to adjust driver’s demand before power splitting is necessary. To get accurate and reliable control strategy, two aspects are the most important. First, a rigorous and organized modeling approach is a base to describe complicated powertrain system of HEV. The energetic macroscopic representation (EMR) is a graphical synthetic description of electromechanical conversion system based on energy flow. A powertrain architecture of HEV is described explicitly via the EMR. Second, the effectiveness of EMS and the reasonability of driving operations are vital.
Technical Paper

Autonomous Emergency Braking Control Based on Hierarchical Strategy Using Integrated-Electro-Hydraulic Brake System

Highway traffic safety has been the most serious problem in current society, statistics show that about 70% to 90% of accidents are caused by driver operational errors. The autonomous emergency braking (AEB) is one of important vehicle intelligent safety technologies to avoid or mitigate collision. The AEB system applies the vehicle brakes when a collision is eminent in spite of any reaction by the driver. In some technologies, the system forewarns the driver with an acoustic signal when a collision is still avoidable, but subsequently applies the brakes automatically if the driver fails to respond. This paper presents the development and implementation of a rear-end collision avoidance system based on hierarchical control framework which consists of threat assessment layer, wheel slip ratio control layer and integrated-electro-hydraulic brake (IEHB) actuator control layer.
Technical Paper

Study on Modeling Method for Common Rail Diesel Engine Calibration and Optimization

The large amount of controllable fuel injection parameters of Diesel engine equipped with high pressure common-rail fuel injection system makes the control of combustion more flexible, and also makes the workload of calibration and optimization much heavier. For higher efficiency, model-based approaches are presented and researched. This contribution presents a new method for modeling which is constituted by Neural Network and Adaptive Network-based Fussy Inference System (ANFIS). The experiment is carried out on a 6-cylinder common rail diesel engine. The analysis and experiment show that effective modeling can be achieved using this method.
Journal Article

A New Method for Bus Drivers' Economic Efficiency Assessment

Transport vehicles consume a large amount of fuel with low efficiency, which is significantly affected by drivers' behaviors. An assessment system of eco-driving pattern for buses could identify the deficiencies of driver operation as well as assist transportation enterprises in driver management. This paper proposes an assessment method regarding drivers' economic efficiency, considering driving conditions. To this end, assessment indexes are extracted from driving economy theories and ranked according to their effect on fuel consumption, derived from a database of 135 buses using multiple regression. A layered structure of assessment indexes is developed with application of AHP, and the weight of each index is estimated. The driving pattern score could be calculated with these weights.