Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Combustion and Emission Characteristics of Polyoxymethylene Dimethyl Ethers (PODE)/ Wide Distillation Fuel (WDF) Blends in Diesel Engine

Wide Distillation Fuel (WDF), with a distillation range from Initial Boiling Point of gasoline to Final Boiling Point of diesel, can be easily gained directly by blending diesel with gasoline. However, the reduced auto-ignitability of WDF could lead to higher HC emissions. Polyoxymethylene Dimethyl Ethers (PODE), with good volatility and oxygen content of up to 49%, have great potential to improve combustion and emission characteristics, especially for soot reduction. Experiments were carried out in a light-duty four-cylinder diesel engine fueled with neat diesel, gasoline/diesel blends (GD), GD/PODE blends (GDP) and the combustion and emission characteristics were carefully examined. Results showed that GDP had the lowest PM emission and diesel had the poorest one among the three fuels. Due to the addition of gasoline and the relatively poor ignitability, GD had lower combustion efficiency and higher Soluble Organic Fraction (SOF) emissions than diesel.
Technical Paper

Characterization Spray and Combustion Processes of Acetone-Butanol-Ethanol (ABE) in a Constant Volume Chamber

Recent research has shown that butanol, instead of ethanol, has the potential of introducing a more suitable blend in diesel engines. This is because butanol has properties similar to current transportation fuels in comparison to ethanol. However, the main downside is the high cost of the butanol production process. Acetone-butanol-ethanol (ABE) is an intermediate product of the fermentation process of butanol production. By eliminating the separation and purification processes, using ABE directly in diesel blends has the potential of greatly decreasing the overall cost for fuel production. This could lead to a vast commercial use of ABE-diesel blends on the market. Much research has been done in the past five years concerning spray and combustion processes of both neat ABE and ABE-diesel mixtures. Additionally, different compositions of ABE mixtures had been characterized with a similar experimental approach.
Technical Paper

Numerical Study of Gasoline Homogeneous Charge Induced Ignition (HCII) by Diesel with a Multi-Component Chemical Kinetic Mechanism

Homogeneous Charge Induced Ignition (HCII) combustion is believed to be a promising approach to achieve clean and high efficiency combustion. HCII can be realized by using port-injection of the high-volatile fuel (gasoline) to prepare in-cylinder homogeneous charge and direct injection of the high-ignitable fuel (diesel) near the top dead center to control the start of combustion. In the current study, a numerical study was carried out to understand the mixing and auto-ignition process in HCII combustion. A multicomponent chemical kinetic mechanism for gasoline and diesel, consisting of n-heptane, iso-octane, ethanol, toluene, diisobutylene and n-decane, has been developed for predicting their ignition and oxidation. The final mechanism consists of 104 species and 398 reactions. This mechanism was validated with the experimental data of ignition delay times and laminar flame speeds for each component and real transportation fuels.
Technical Paper

Study of Near Nozzle Spray Characteristics of Ethanol under Different Saturation Ratios

Atomization of fuel sprays is a key factor in controlling the combustion quality in the direct-injection engines. In this present work, the effect of saturation ratio (Rs) on the near nozzle spray patterns of ethanol was investigated using an ultra-high speed imaging technique. The Rs range covered both flash-boiling and non-flash boiling regions. Ethanol was injected from a single-hole injector into an optically accessible constant volume chamber at a fixed injection pressure of 40 MPa with different fuel temperatures and back pressures. High-speed imaging was performed using an ultrahigh speed camera (1 million fps) coupled with a long-distance microscope. Under non-flash boiling conditions, the effect of Rs on fuel development was small but observable. Clear fuel collision can be observed at Rs=1.5 and 1.0. Under the flash boiling conditions, near-nozzle spray patterns were significant different from the non-flash boiling ones.
Technical Paper

PLII-LEM and OH* Chemiluminescence Study on Soot Formation in Spray Combustion of PODEn-Diesel Blend Fuels in a Constant Volume Vessel

Polyoxymethylene dimethyl ethers (PODEn) are promising alternative fuel candidates for diesel engines because they present advantages in soot reduction. This study uses a PODEn mixture (contains PODE3-6) from mass production to provide oxygen component in blend fuels. The spray combustion of PODEn-diesel bend fuels in a constant volume vessel was studied using high speed imaging, PLII-LEM and OH* chemiluminescence. Fuels of several blend ratios are compared with pure diesel. Flame luminance data show a near linear decrease tendency with the blend ratio increasing. The OH* images reveal that the ignition positions of all the cases have small differences, which indicates that using a low PODEn blend ratio of no more than 30% does not need significant adjustment in engine combustion control strategies. It is found that 30% PODEn blended with diesel (P30) can effectively reduce the total soot by approximately 68% in comparison with pure diesel.
Technical Paper

Effects of Ethanol in Ester-Ethanol-Diesel Blended Fuels on Spray Behavior and PM Emission

The ethanol has potential to be a renewable alternative fuel for internal combustion engines and contributes to lower global CO2 emission. In this study, vegetable methyl ester is added in the ethanol-diesel fuel to prevent separation of the ethanol from diesel, thus the ethanol blend ratio can be set up to 30% in volume. This work pays more attention on its spray, effects of the ethanol percentage on the detailed PM components. To investigate the spray behavior of ethanol, diesel and their blends, experiments in a constant volume chamber were carried out combining numerical simulation. Properties of the ethanol-diesel blended fuels were obtained through some measurements and empirical calculations. The breakup sub-model, Wave-KH model considering the blend fuel properties were adopted in an engine simulation code KIVA-3V. The simulation had a good agreement with experiments.
Journal Article

Transient Emissions Characteristics of a Turbocharged Engine Fuelled by Biodiesel Blends

The effects of different biodiesel blends on engine-out emissions under various transient conditions were investigated in this study using fast response diagnostic equipment. The experimental work was conducted on a modern 3.0 L, V6 high pressure common rail diesel engine fuelled with mineral diesel (B0) and three different blends of rapeseed methyl esters (RME) (B30, B60, B100 by volume) without any modifications of engine parameters. DMS500, Fast FID and Fast CLD were used to measure particulate matter (PM), total hydrocarbon (THC) and nitrogen monoxide (NO) respectively. The tests were conducted during a 12 seconds period with two tests in which load and speed were changed simultaneously and one test with only load changing. The results show that as biodiesel blend ratio increased, total particle number (PN) and THC were decreased whereas NO was increased for all the three transient conditions.
Journal Article

Development of Surrogate Model for Oxygenated Wide-Distillation Fuel with Polyoxymethylene Dimethyl Ether

Polyoxymethylene Dimethyl Ether (PODEn) is a promising green additive to diesel fuel, owing to the unique chemical structure (CH3O[CH2O]nCH3, n≥2) and high cetane number. Together with the general wide-distillation fuel (WDF), which has an attractive potential to reduce the cost of production of vehicle fuel, the oxygenated WDF with PODEn can help achieve a high efficiency and low emissions of soot, NOx, HC, and CO simultaneously. In this paper, the first detailed reaction mechanism (225 species, 1082 reactions) which can describe the ignition characteristics of PODE1 and PODE3 at low temperature was developed.
Technical Paper

An Optical Study on the Combustion of Gasoline/PODEn Blends in a Constant Volume Vessel

Polyoxymethylene dimethyl ethers (PODEn) have high cetane number, high oxygen content and high volatility, therefore can be added to gasoline to optimize the performance and soot emission of Gasoline Compression Ignition (GCI) combustion. High speed imaging was used to investigate the spray and combustion process of gasoline/PODEn blends (PODEn volume fraction 0%-30%) under various ambient conditions and injection strategies in a constant volume vessel. Results showed that with an increase of PODEn proportion from 10% to 30%, liquid-phase penetration of the spray increased slightly, ignition delay decreased from 3.8 ms to 2.0 ms and flame lift off length decreased 29.4%, causing a significant increase of the flame luminance. For blends with 20% PODEn, when ambient temperature decreased from 893 K to 823 K, the ignition delay increased 1.3 ms and the flame luminance got lower.