Refine Your Search

Search Results

Technical Paper

Evolution and Future Development of Vehicle Fuel Specification in China

2021-09-21
2021-01-1201
Fuel quality has a significant influence on the combustion engine operation. In recent years the increasing concerns about environmental protection, energy saving, energy security and the requirements of protecting fuel injection and aftertreatment systems have been major driving forces for the Chinese fuel specification evolution. The major property changes in the evolution of Chinese national gasoline and diesel standards are introduced and the reasons behind these changes are analyzed in this paper. The gasoline fuel development from State I to State VI-B involved a decrease of sulfur, manganese, olefins, aromatics and benzene content. The diesel fuel quality improvement from State I to State VI included achieving low sulfur fuels and a cetane number (CN) increase. Provincial fuel standards, stricter than corresponding national standards, were implemented in economically developed areas in the past.
Technical Paper

Instantaneous PLII and OH* Chemiluminescence Study on Wide Distillation Fuels, PODEn and Ethanol Blends in a Constant Volume Vessel

2020-04-14
2020-01-0340
The combustion characteristics and soot emissions of three types of fuels were studied in a high pressure and temperature vessel. In order to achieve better volatility, proper cetane number and high oxygen content, the newly designed WDEP fuel was proposed and investigated. It is composed of wide distillation fuel (WD), PODE3-6 mixture (PODEn) and ethanol. For comparison, the test on WD and the mixture of PODEn-ethanol (EP) are also conducted. OH* chemiluminescence during the combustion was measured and instantaneous PLII was also applied to reveal the soot distribution. Abel transformation was adopted to calculate the total soot of axisymmetric flame. The results show that WDEP has similar ignition delays and flame lift-off lengths to those of WD at 870-920 K. But the initial ignition locations of WDEP flame in different cycles were more concentrated, particularly under the condition of low oxygen atmosphere.
Journal Article

Development of Surrogate Model for Oxygenated Wide-Distillation Fuel with Polyoxymethylene Dimethyl Ether

2017-10-08
2017-01-2336
Polyoxymethylene Dimethyl Ether (PODEn) is a promising green additive to diesel fuel, owing to the unique chemical structure (CH3O[CH2O]nCH3, n≥2) and high cetane number. Together with the general wide-distillation fuel (WDF), which has an attractive potential to reduce the cost of production of vehicle fuel, the oxygenated WDF with PODEn can help achieve a high efficiency and low emissions of soot, NOx, HC, and CO simultaneously. In this paper, the first detailed reaction mechanism (225 species, 1082 reactions) which can describe the ignition characteristics of PODE1 and PODE3 at low temperature was developed.
Journal Article

Transient Emissions Characteristics of a Turbocharged Engine Fuelled by Biodiesel Blends

2013-04-08
2013-01-1302
The effects of different biodiesel blends on engine-out emissions under various transient conditions were investigated in this study using fast response diagnostic equipment. The experimental work was conducted on a modern 3.0 L, V6 high pressure common rail diesel engine fuelled with mineral diesel (B0) and three different blends of rapeseed methyl esters (RME) (B30, B60, B100 by volume) without any modifications of engine parameters. DMS500, Fast FID and Fast CLD were used to measure particulate matter (PM), total hydrocarbon (THC) and nitrogen monoxide (NO) respectively. The tests were conducted during a 12 seconds period with two tests in which load and speed were changed simultaneously and one test with only load changing. The results show that as biodiesel blend ratio increased, total particle number (PN) and THC were decreased whereas NO was increased for all the three transient conditions.
Technical Paper

Development of the Main Controller of Compressed Natural Gas Engine Based on the 32-Digit PowerPC561

2008-06-23
2008-01-1738
To realize the precise control of injection and ignition of compressed natural gas engine, the 32-Digit PowerPC561 was selected as the single-chip microcomputer for the compressed natural gas engine. The signal processing module, controller module and power driver module of the engine control system were introduced successively. In the injection valve drive circuit, a new design method realized the ‘Peak&Hold’ drive current wave shape, which reduced the software work of injection development. In the ignition module circuit, the feedback of the time of ignition persistence and preliminary coil close period were successfully realized. The Engine Control Unit (ECU) has flexible control functions, which fulfill the requirements of engine control system.
Technical Paper

Study of Near Nozzle Spray Characteristics of Ethanol under Different Saturation Ratios

2016-10-17
2016-01-2189
Atomization of fuel sprays is a key factor in controlling the combustion quality in the direct-injection engines. In this present work, the effect of saturation ratio (Rs) on the near nozzle spray patterns of ethanol was investigated using an ultra-high speed imaging technique. The Rs range covered both flash-boiling and non-flash boiling regions. Ethanol was injected from a single-hole injector into an optically accessible constant volume chamber at a fixed injection pressure of 40 MPa with different fuel temperatures and back pressures. High-speed imaging was performed using an ultrahigh speed camera (1 million fps) coupled with a long-distance microscope. Under non-flash boiling conditions, the effect of Rs on fuel development was small but observable. Clear fuel collision can be observed at Rs=1.5 and 1.0. Under the flash boiling conditions, near-nozzle spray patterns were significant different from the non-flash boiling ones.
Technical Paper

Effect of the Pre-Chamber Orifice Geometry on Ignition and Flame Propagation with a Natural Gas Spark Plug

2017-10-08
2017-01-2338
Natural gas is one of the promising alternative fuels due to the low cost, worldwide availability, high knock resistance and low carbon content. Ignition quality is a key factor influencing the combustion performance in natural gas engines. In this study, the effect of pre-chamber geometry on the ignition process and flame propagation was studied under varied initial mixture temperatures and equivalence ratios. The pre-chambers with orifices in different shapes (circular and slit) were investigated. Schlieren method was adopted to acquire the flame propagation. The results show that under the same cross-section area, the slit pre-chamber can accelerate the flame propagation in the early stages. In the most of the cases, the penetration length of the flame jet and flame area development are higher in the early stages of combustion.
Technical Paper

PLII-LEM and OH* Chemiluminescence Study on Soot Formation in Spray Combustion of PODEn-Diesel Blend Fuels in a Constant Volume Vessel

2017-10-08
2017-01-2329
Polyoxymethylene dimethyl ethers (PODEn) are promising alternative fuel candidates for diesel engines because they present advantages in soot reduction. This study uses a PODEn mixture (contains PODE3-6) from mass production to provide oxygen component in blend fuels. The spray combustion of PODEn-diesel bend fuels in a constant volume vessel was studied using high speed imaging, PLII-LEM and OH* chemiluminescence. Fuels of several blend ratios are compared with pure diesel. Flame luminance data show a near linear decrease tendency with the blend ratio increasing. The OH* images reveal that the ignition positions of all the cases have small differences, which indicates that using a low PODEn blend ratio of no more than 30% does not need significant adjustment in engine combustion control strategies. It is found that 30% PODEn blended with diesel (P30) can effectively reduce the total soot by approximately 68% in comparison with pure diesel.
Technical Paper

Numerical Study of Gasoline Homogeneous Charge Induced Ignition (HCII) by Diesel with a Multi-Component Chemical Kinetic Mechanism

2016-04-05
2016-01-0784
Homogeneous Charge Induced Ignition (HCII) combustion is believed to be a promising approach to achieve clean and high efficiency combustion. HCII can be realized by using port-injection of the high-volatile fuel (gasoline) to prepare in-cylinder homogeneous charge and direct injection of the high-ignitable fuel (diesel) near the top dead center to control the start of combustion. In the current study, a numerical study was carried out to understand the mixing and auto-ignition process in HCII combustion. A multicomponent chemical kinetic mechanism for gasoline and diesel, consisting of n-heptane, iso-octane, ethanol, toluene, diisobutylene and n-decane, has been developed for predicting their ignition and oxidation. The final mechanism consists of 104 species and 398 reactions. This mechanism was validated with the experimental data of ignition delay times and laminar flame speeds for each component and real transportation fuels.
Technical Paper

Combustion and Emission Characteristics of Polyoxymethylene Dimethyl Ethers (PODE)/ Wide Distillation Fuel (WDF) Blends in Diesel Engine

2018-04-03
2018-01-0926
Wide Distillation Fuel (WDF), with a distillation range from Initial Boiling Point of gasoline to Final Boiling Point of diesel, can be easily gained directly by blending diesel with gasoline. However, the reduced auto-ignitability of WDF could lead to higher HC emissions. Polyoxymethylene Dimethyl Ethers (PODE), with good volatility and oxygen content of up to 49%, have great potential to improve combustion and emission characteristics, especially for soot reduction. Experiments were carried out in a light-duty four-cylinder diesel engine fueled with neat diesel, gasoline/diesel blends (GD), GD/PODE blends (GDP) and the combustion and emission characteristics were carefully examined. Results showed that GDP had the lowest PM emission and diesel had the poorest one among the three fuels. Due to the addition of gasoline and the relatively poor ignitability, GD had lower combustion efficiency and higher Soluble Organic Fraction (SOF) emissions than diesel.
Technical Paper

Numerical Study of DMF and Gasoline Spray and Mixture Preparation in a GDI Engine

2013-04-08
2013-01-1592
2, 5-Dimethylfuran (DMF) has been receiving increasing interest as a potential alternative fuel to fossil fuels, owing to the recent development of new production technology. However, the influence of DMF properties on the in-cylinder fuel spray and its evaporation, subsequent combustion processes as well as emission formation in current gasoline direct injection (GDI) engines is still not well understood, due to the lack of comprehensive understanding of its physical and chemical characteristics. To better understand the spray characteristics of DMF and its application to the IC engine, the fuel sprays of DMF and gasoline were investigated by experimental and computational methods. The shadowgraph and Phase Doppler Particle Analyzer (PDPA) techniques were used for measuring spray penetration, droplet velocity and size distribution of both fuels.
Technical Paper

Effects of Ethanol in Ester-Ethanol-Diesel Blended Fuels on Spray Behavior and PM Emission

2006-04-03
2006-01-0236
The ethanol has potential to be a renewable alternative fuel for internal combustion engines and contributes to lower global CO2 emission. In this study, vegetable methyl ester is added in the ethanol-diesel fuel to prevent separation of the ethanol from diesel, thus the ethanol blend ratio can be set up to 30% in volume. This work pays more attention on its spray, effects of the ethanol percentage on the detailed PM components. To investigate the spray behavior of ethanol, diesel and their blends, experiments in a constant volume chamber were carried out combining numerical simulation. Properties of the ethanol-diesel blended fuels were obtained through some measurements and empirical calculations. The breakup sub-model, Wave-KH model considering the blend fuel properties were adopted in an engine simulation code KIVA-3V. The simulation had a good agreement with experiments.
Technical Paper

Effects of Octane Number and Sensitivity on Combustion of Jet Ignition Engine

2022-03-29
2022-01-0435
Octane number (ON) and octane sensitivity (S), the fuel anti-knock indices, are critical for the design of advanced jet ignition engines. In this study, ten fuels with different research octane number (RON) and varying S were formulated based on ethanol reference fuels (ERFs) to investigate the effect of S on combustion of jet ignition engine. To fully understand S effects, the combustion characteristics under EGR dilution and lean burn were further investigated. The results indicated that increasing S resulted in higher reactivity with shorter ignition delay and combustion duration. The increase of reactivity led to heavier knocking intensity. The competition between the flame speed and the reactivity of the mixture determined the auto-ignition fraction of mixture and the knocking onset crank angle as S varied. Medium S (S=3) was helpful to improve the combustion speed, reduce the auto-ignition fraction of mixture and retard the knocking onset crank angle.
Technical Paper

An Optical Study on the Combustion of Gasoline/PODEn Blends in a Constant Volume Vessel

2018-09-10
2018-01-1748
Polyoxymethylene dimethyl ethers (PODEn) have high cetane number, high oxygen content and high volatility, therefore can be added to gasoline to optimize the performance and soot emission of Gasoline Compression Ignition (GCI) combustion. High speed imaging was used to investigate the spray and combustion process of gasoline/PODEn blends (PODEn volume fraction 0%-30%) under various ambient conditions and injection strategies in a constant volume vessel. Results showed that with an increase of PODEn proportion from 10% to 30%, liquid-phase penetration of the spray increased slightly, ignition delay decreased from 3.8 ms to 2.0 ms and flame lift off length decreased 29.4%, causing a significant increase of the flame luminance. For blends with 20% PODEn, when ambient temperature decreased from 893 K to 823 K, the ignition delay increased 1.3 ms and the flame luminance got lower.
Technical Paper

Study of Turbulent Entrainment Quasi-Dimensional Combustion Model for HCNG Engines with Variable Ignition Timings

2018-09-10
2018-01-1687
Presently, urban transportation highly depends on the fossil fuels, but its rapid fluctuating economic issues and environmental consequences impose the variegation of energy sources. Hydrogen enriched compressed natural gas (HCNG) engines offer the potential of higher brake thermal efficiency with low emissions, which also satisfies the strict pollutant emission standards. The two-zone turbulent entrainment quasi-dimensional combustion model is developed to predict the combustion process of spark-ignited hydrogen enriched compressed natural gas-fueled engines. The fundamentals of thermodynamic process, turbulent flame propagation model and other sub-models like laminar burning velocity, adiabatic temperature and ignition lag model are introduced for the better accuracy. The experiments have been conducted for three different fuels; pure CNG, 20% HCNG, and 40% HCNG blends under MAP of 105 kPa for various excess air ratios (λ) and ignition timing (θi).
Technical Paper

Improving Combustion and Emission Characteristics in Heavy-Duty Natural-Gas Engine by Using Pistons Enhancing Turbulence

2018-09-10
2018-01-1685
Compressed Natural Gas (CNG), because of its low cost, high H/C ratio, and high octane number, has great potential in automotive industry, especially for heavy-duty commercial vehicles. However, relative slow flame speed of natural gas leads to long combustion duration and low thermal efficiency and tends to cause knock combustion at high load, which will aggravate engine thermal load and reliability. Enhancing turbulence intensity in combustion chamber is an effective way to accelerate flame propagation speed and improve combustion performance. In this study, the flow simulations of several piston bowls with different inner-convex forms were carried out using three-dimensional computational fluid dynamics (3D-CFD) software CONVERGE. The numerical results showed the piston bowls with inner-convex could disturb the charge swirl motion and enhance turbulence of different intensity. A hexagram geometry bowl was proved to have the best function in strengthening turbulence intensity.
Technical Paper

Characterization Spray and Combustion Processes of Acetone-Butanol-Ethanol (ABE) in a Constant Volume Chamber

2015-04-14
2015-01-0919
Recent research has shown that butanol, instead of ethanol, has the potential of introducing a more suitable blend in diesel engines. This is because butanol has properties similar to current transportation fuels in comparison to ethanol. However, the main downside is the high cost of the butanol production process. Acetone-butanol-ethanol (ABE) is an intermediate product of the fermentation process of butanol production. By eliminating the separation and purification processes, using ABE directly in diesel blends has the potential of greatly decreasing the overall cost for fuel production. This could lead to a vast commercial use of ABE-diesel blends on the market. Much research has been done in the past five years concerning spray and combustion processes of both neat ABE and ABE-diesel mixtures. Additionally, different compositions of ABE mixtures had been characterized with a similar experimental approach.
Technical Paper

Optical diagnostic study on ammonia-diesel and ammonia-PODE dual fuel engines

2024-04-09
2024-01-2362
Ammonia shows promise as an alternative fuel for internal combustion engines (ICEs) in reducing CO2 emissions due to its carbon-free nature and well-established infrastructure. However, certain drawbacks, such as the high ignition energy, the narrow flammability range, and the extremely low laminar flame speed, limit its widespread application. The dual fuel (DF) mode is an appealing approach to enhance ammonia combustion. The combustion characteristics of ammonia-diesel dual fuel mode and ammonia-PODE3 dual fuel mode were experimentally studied using a full-view optical engine and the high-speed photography method. The ammonia energy ratio (ERa) was varied from 40% to 60%, and the main injection energy ratio (ERInj1) and the main injection time (SOI1) were also varied in ammonia-PODE3 mode.
Technical Paper

A Study on Combustion and Emission Characteristics of an Ammonia-Biodiesel Dual-Fuel Engine

2024-04-09
2024-01-2369
Internal combustion engines, as the dominant power source in the transportation sector and the primary contributor to carbon emissions, face both significant challenges and opportunities in the context of achieving carbon neutral goal. Biofuels, such as biodiesel produced from biomass, and zero-carbon fuel ammonia, can serve as alternative fuels for achieving cleaner combustion in internal combustion engines. The dual-fuel combustion of ammonia-biodiesel not only effectively reduces carbon emissions but also exhibits promising combustion performance, offering a favorable avenue for future applications. However, challenges arise in the form of unburned ammonia (NH3) and N2O emissions. This study, based on a ammonia-biodiesel duel-fuel engine modified from a heavy-duty diesel engine, delves into the impact of adjustments in the two-stage injection strategy on the combustion and emission characteristics.
Technical Paper

Experimental Study on Ammonia-Methanol Combustion and Emission Characteristics in a Spark Ignition Engine

2024-04-09
2024-01-2820
Ammonia and methanol are both future fuels with carbon-neutral potential. Ammonia has a high octane number, a slow flame speed, and a narrow ignition limit, while methanol has a fast flame speed with complementary combustion characteristics but is more likely to lead to pre-ignition and knock. In this paper, the combustion and emission characteristics of ammonia-methanol solution in a high compression ratio spark ignition engine are investigated. The experimental results show that the peak in-cylinder pressure and peak heat release rate of the engine when using ammonia-methanol solution are lower and the combustion phase is retarded compared with using methanol at the same spark timing conditions. Using ammonia-methanol solution in the engine resulted in a more ideal combustion phase than that of gasoline, leading to an increase in indicated thermal efficiency of more than 0.6% and a wider range of efficient operating conditions.
X