Refine Your Search

Search Results

Technical Paper

Development of Shear Fracture Criterion for Dual-Phase Steel Stamping

2009-04-20
2009-01-1172
Forming Limit Diagrams (FLD) have been widely and successfully used in sheet metal stamping as a failure criterion to detect localized necking, which is the most common failure mechanism for conventional steels during forming. However, recent experience from stamping Dual-Phase steels found that, under certain circumstances such as stretching-bend over a small die radius, the sheet metal fails earlier than that predicted by the FLD based on the initiation of a localized neck. It appears that a different failure mechanism and mode are in effect, commonly referred to as “shear fracture” in the sheet metal stamping community. In this paper, experimental and numerical analysis is used to investigate the shear fracture mechanism. Numerical models are established for a stretch-bend test on DP780 steel with a wide range of bend radii for various failure modes. The occurrences of shear fracture are identified by correlating numerical simulation results with test data.
Technical Paper

Material Property and Formability Characterization of Various Types of High Strength Dual Phase Steel

2009-04-20
2009-01-0794
As a result of the increasing usage of high strength steels in automotive body structures, a number of formability issues, particularly bend and edge stretch failures, have come to the forefront of attention of both automotive OEMs and steel makers. This investigation reviews these stamping problems and attempts to identify how certain material properties and microstructural features relate to forming behavior. Various types of dual phase steels were evaluated in terms of tensile, bending, hole expansion, limiting dome height, and impact properties. In addition, the key microstructural differences of each grade were characterized. In order to understand the material behavior under practical conditions, stamping trials were conducted using actual part shapes. It was concluded that material properties can be optimized to maximize local formability in stamping applications. The results also emphasize that the dual phase classification can encompass a broad range of property variations.
Technical Paper

Springback Prediction Improvement Using New Simulation Technologies

2009-04-20
2009-01-0981
Springback is a major concern in stamping of advanced high strength steels (AHSS). The existing computer simulation technology has difficulty predicting this phenomenon accurately even though it is well developed for formability simulations. Great efforts made in recent years to improve springback predictions have achieved noticeable progress in the computational capability and accuracy. In this work, springback simulation studies are conducted using FEA software LS-DYNA®. Various parametric sensitivity studies are carried out and key variables affecting the springback prediction accuracy are identified. Recently developed simulation technologies in LS-DYNA® are implemented including dynamic effect minimization, smooth tool contact and newly developed nonlinear isotropic/kinematic hardening material models. Case studies on lab-scale and full-scale industrial parts are provided and the predicted springback results are compared to the experimental data.
Technical Paper

An Experimental Study on Static and Fatigue Strengths of Resistance Spot Welds with Stack-up of Advanced High Strength Steels and Adhesive

2016-04-05
2016-01-0389
This paper describes static and fatigue behavior of resistance spot welds with the stack-up of conventional mild and advanced high strength steels, with and without adhesive, based on a set of lap shear and coach peel coupon tests. The coupons were fabricated following specified spot welding and adhesive schedules. The effects of similar and dissimilar steel grade sheet combinations in the joint configuration have been taken into account. Tensile strength of the steels used for the coupons, both as-received and after baked, and cross-section microstructure photographs are included. The spot weld SN relations between this study and the study by Auto/Steel Partnership are compared and discussed.
Technical Paper

Failure Modeling of Adhesive Bonded Joints with Cohesive Elements

2017-03-28
2017-01-0351
Advanced high strength steels (AHSS) have been extensively used in the automotive industry for vehicle weight reduction. Although AHSS show better parent metal fatigue performance, the influence of material strength on spot weld fatigue is insignificant. To overcome this drawback, structural adhesive can been used along with spot weld to form weld-bond joints. These joints significantly improve spot weld fatigue performance and provide high joint stiffness enabling down-gauge of AHSS structures. However, modeling the adhesive joints using finite element methods is a challenge due to the nonlinear behavior of the material. In this study, the formulation of cohesive element based on the traction-separation constitutive law was applied to predict the initiation and propagation of the failure mode in the adhesively bonded joints for lap shear and coach peel specimens subjected to quasi-static loadings. The predicted load versus displacement relations correlated well with the test results.
Technical Paper

Determination of the Forming Limit Curve Using Digital Image Correlation - Comparison of Different Approaches to Pinpoint the Onset of Localized Necking

2017-03-28
2017-01-0301
Digital image correlation (DIC) technique has been proved as a potent tool to determine the forming limit curve (FLC) of sheet metal. One of the major technical challenges using the DIC to generate FLC is to accurately pinpoint the onset of localized necking from the DIC data. In addition to the commonly applied ISO 12004-2 standard, a plethora of other DIC data analysis approaches have been developed and used by various users and researchers. In this study, different approaches, including spatial, temporal and hybrid approaches, have been practiced to determine the limit strains at the onset of localized necking. The formability of a 980GEN3 sheet steel was studied in this work using the Marciniak cup test coupled with a DIC system. The resulting forming limits determined by different approaches were compared. Strengths and limitations of each approach were discussed. In addition, the conventional finger-touch approach was excised using specimens with perceivable localized necks.
Technical Paper

Effects of AHSS Sheared Edge Conditions on Crash Energy Absorption in Component Bend Test

2018-04-03
2018-01-0113
Edge fracture of advanced high strength steels (AHSS) can occur in both the stamping process and the crash event. Fracture due to poor sheared edge conditions in the stamping process was reduced with a recently developed optimal shearing process for AHSS. Currently, the improvement in the energy absorption due to the improved edge condition during crashes performed under different loading conditions had not been closely verified. The purpose of this study is to design and build a miniature component of AHSS and a three-point bending test for investigating the influence of various conditions of the sheared edge on the energy absorption in crashes. AHSS including DP600, TRIP780, DP980 and DP1180 were selected in the study. A small channel component was developed and fabricated using DP980 to simulate key features of the B-pillar. The exposed non-constrained, as-sheared edge was subject to stretch bending forces in three-dimensional space during the three-point bending test.
Technical Paper

Prediction of Stretch Flangeability Limits of Advanced High Strength Steels using the Hole Expansion Test

2007-04-16
2007-01-1693
More and more advanced high strength steels (AHSS) such as dual phase steels and TRIP steels are implemented in automotive components due to their superior crash performance and vehicle weight reduction capabilities. Recent trends show increased applications of higher strength grades such as 780/800 MPa and 980/1000 MPa tensile strength for crash sensitive components to meet more stringent safety regulations in front crash, side impact and roll-over situations. Several issues related to AHSS stamping have been raised during implementation such as springback, stretch bending fracture with a small radius to thickness ratio, edge cracking, etc. It has been shown that the failure strains in the stretch bending fracture and edge cracking can be significantly lower than the predicted forming limits, and no failure criteria are currently available to predict these failures.
Technical Paper

A Comparative Examination of the Resistance Spot Welding Behavior of Two Advanced High Strength Steels

2006-04-03
2006-01-1214
Advanced high-strength steels (AHSS) are a class of steels that have a minimum tensile strength of 500 MPa. The advantages of AHSS include superior formability and better crash energy absorption compared with conventional low-strength steels having a minimum tensile strength of 270 MPa. Several steels with a minimum tensile strength of 590 MPa have already found use in current vehicles, and others with minimum tensile strength up to 980 MPa have been qualified for use in future vehicle models. Two 780 MPa steels of interest are 780 DP (Dual Phase) and 780 TRIP (TRansformation Induced Plasticity). In this study, an examination was undertaken to compare the resistance spot-welding behavior of commercially produced 1.6 mm-thick, hot-dipped galvannealed, 780 MPa DP and TRIP steel sheet. Included in the study were evaluations of the weld lobes, weld microhardness, and the shear- and cross-tension strengths of resistance spot welds for the two steels.
Technical Paper

Hydroforming Simulation for High Strength Steel Tubes

2006-04-03
2006-01-0545
Tubular hydroforming is being used extensively for manufacturing various automotive structural parts due to its weight reduction and cost saving potentials. The use of a thin wall advanced high strength steel (AHSS) tube offers great potential to further expand hydroforming applications to upper body components. In this study, numerical and experimental investigations are conducted on a free expansion hydroforming case using various AHSS thin wall tubes. The results are also compared with tubes made from conventional steels and different tubing processes. The appropriate use of the forming limit in hydroforming is also discussed. In numerical study, a new simulation method is developed and validated to handle tube material properties input. Good correlations to the experimental data have been obtained. The new method only requires the flat sheet stress–strain curves as the basic material property. Tube and weld properties are modeled as a pre-strained tubular blank.
Technical Paper

Influence of AHSS Part Geometric Features on Crash Behavior

2006-04-03
2006-01-1588
Advanced High Strength Steels (AHSS) are replacing conventional high strength low-alloyed steels (HSLA) in crash sensitive body in white (BIW) applications. Along with innovative product design, they offer superior crash energy management and vehicle weight reduction potential. However, Controlling springback and dimensional accuracy is one of the major concerns in manufacturing AHSS parts. One of the most effective springback control techniques is to design a part with added geometric features such as side stiffening beads, state beads, top hat beads, and embossments, etc. at the product design stage. On the other hand, product design communities tend to believe that the above listed features may result in premature crash initiation in the part. This paper uses an innovative and experimentally verified finite element method (FEM) for crash sensitive component design and optimization.
Technical Paper

Mass Efficient Cross-Sections Using Dual Phase Steels For Axial and Bending Crushes

2007-04-16
2007-01-0978
Because of their excellent crash energy absorption capacity, dual phase (DP) steels are gradually replacing conventional High Strength Low Alloy (HSLA) steels for critical crash components in order to meet the more stringent vehicle crash safety regulations. To achieve optimal axial and bending crush performance using DP steels for crash components designed for crash energy absorption and/or intrusion resistance applications, the cross sections need to be optimized. Correlated crush simulation models were employed for the cross-section study. The models were developed using non-linear finite element code LS-DYNA and correlated to dynamic and quasi-static axial and bending crush tests on hexagonal and octagonal cross-sections made of DP590 steel. Several design concepts were proposed, the axial and bending crush performance in DP780 and DP980 were compared, and the potential mass savings were discussed.
Technical Paper

On Formability Limitations in Stamping Involving Sheared Edge Stretching

2007-04-16
2007-01-0340
The use of advanced high strength steels (AHSS) such as dual phase (DP), transformation induced plasticity (TRIP) and stretch flanging (SF) steels of the tensile strength of 600 MPa range are well established in automotive components production. This is due to their superior crash energy absorption ability and vehicle weight reduction potential. Recent trends show rapid growth in applications of even higher strength grades such as 800 MPa and 1000 MPa tensile strength and above. They are mostly used for fabrication of crash sensitive components to meet much higher safety requirements in side impact and roll-over accidents. One of the few concerns during the fabrication of AHSS components is the formability limit in flanging and hole expansion operations. Questions have been raised about the applicability of existing manufacturing experience with conventional high strength low alloy steels (HSLA) to new generations of AHSS.
Technical Paper

A Failure Criterion for Stretch Bendability of Advanced High Strength Steels

2006-04-03
2006-01-0349
Studies in an Angular Stretch Bend Test (ASBT) have demonstrated that the failure location moves from the side wall to punch nose area. This occurs as the R/T ratio decreases below a certain limit and applies to most low carbon steels with the exception of Dual Phase (DP) steels. Such behavior in DP steels indicates that bending effects have a severe impact on the formability of DP materials. Therefore, the traditional criterion using the forming limit curve (FLC) is not suitable to assess the formability at punch radius areas for DP steels due in part to its uniqueness of unconventional microstructures. In this paper, a new failure criterion, ‘Bending-modified’ FLC (BFLC), is proposed by extending the traditional FLC using the “Stretch Bendability Index” (SBI) concept for the stretch bendability assessment.
Technical Paper

Materials Selection for Automotive Closure Applications with Respect to Cost and Function

2003-10-27
2003-01-2885
In the past ten year period, due primarily to government mandates for fuel economy improvement, alternate materials have replaced steel on many closure applications at American OEMs (hoods, decklids, and liftgates). But due to recent cost reduction initiatives set by automakers and the advent of newly developed high strength steels, this trend has been challenged by lighter weight, less costly steel alternatives, with near equal or superior performance. This paper, through case studies undertaken at several North American OEM facilities, examines the cost differential, material property options, manufacturing differences, and performance characteristics between the application of aluminum and steel for common hood, lift gate, and deck lid assemblies for both current and future production parts.
Technical Paper

Metal Forming Characterization and Simulation of Advanced High Strength Steels

2004-03-08
2004-01-1048
Advanced high strength steels (AHSS), such as dual phase (DP) and transformation induced plasticity (TRIP) steels, have been used successfully for making light weight vehicles and their usage is growing. Now, the automotive industry is expanding the use of AHSS to higher strength levels for further mass reduction. In a 2003 SAE paper, the material and formability characteristics for such steels were presented for steel grades of DP980, high yield type DP780 (780YM), low yield type DP780 (780YL), TRIP780, and TRIP590. In this study, experiments were conducted to assess the formability of these high strength steels using a T-channel, which incorporates several different forming modes in automotive stamping. The feasibility of computer simulation technology for the formability analyses of AHSS is also addressed.
Technical Paper

Hydroforming Performance of Laser Welded and Electric Resistance Welded High Strength Steel Tubes

2004-03-08
2004-01-0830
The tubular hydroforming process has been used to reduce the weight of body-in-white (BIW) components by consolidating parts and eliminating weld flanges. Electric resistance welding (ERW) is the primary joining method for hydroformed tubes made of mild steels and some conventional high strength steels. Due to recently introduced Advanced High Strength Steels (AHSS), such as dual phase and TRIP steels, laser welded (LW) tubes have also been considered for hydroforming applications, particularly for thin-wall, large-diameter tubes. In this study, LW and ERW tubes are evaluated in a free-expansion hydroforming process using various strength steels including AHSS. The LW tubes made from both DP590 and TRIP590 steels were successfully hydroformed to a 64% expansion ratio(the maximum for the die cavity), an improved performance over the ERW TRIP590 tubes. The ERW tubes made from C-Mn440 and lower strength grades were also free-expansion hydroformed successfully to the maximum die cavity.
Technical Paper

Material Applications in ULSAB-AVC (Advanced Vehicle Concepts)

2002-07-09
2002-01-2074
Advanced high strength steels were a key enabling factor in achieving the remarkable results of the ULSAB-AVC (Advanced Vehicle Concepts) Program. The complete body structure consists of high strength steels with over 80% being advanced high strength steel grades. Vehicle weight reduction, reduced costs and improved safety performance are the main driving forces behind material selection for automotive applications. High strength steels (HSS) have demonstrated their ability to meet these demands and consequently have been the fastest growing light-weighting material in vehicle structures for the past decade. The evolution in steel technology in recent years has produced new grades of highly formable, advanced high strength steel (AHSS) grades that will continue to meet these automotive demands into the next decade.
Technical Paper

Advanced High Strength Steel Springback and Sidewall Curl Control Guideline

2005-04-11
2005-01-0499
Low carbon steels are being replaced by advanced high strength steels (AHSS) due to high demand of the future lighter weight vehicle, while still maintaining good or even better crash performance. However, sidewall curl and springback (section opening) have been found to increase as the strength of the sheet metal increases. Experiments have been conducted on the bending under tension (BUT) test to seek an effective control methodology regarding the applications of the advanced high strength steels (AHSS) in this study. Steels that were studied included a low carbon steel (DQSK), two dual phase steels (DP) and a transformation induced plasticity (TRIP) steel. Two different gauges of each AHSS were also included for a gauge sensitivity study. Different processing variables (four different diameter pins combining with five different back tension forces) were applied to the tests, and the springback angle and sidewall curl were measured for bend and bend-unbend areas of the specimen.
Technical Paper

Numerical Investigation of Effects of Frame Trigger Hole Location on Crash Behavior

2005-04-11
2005-01-0702
The front rail plays a very important role in vehicle crash. Trigger holes are commonly used to control frame crush mode due to their simple manufacturing process and flexibility for late changes in the product development phase. Therefore, a study, including CAE and testing, was conducted on a production front rail to understand the effects of trigger hole shape, size and orientation. The trigger hole location in the front rail also affects crash performance. Therefore, the effect of trigger hole location on front rail crash behavior was studied, and understanding these effects is the main objective of this study. A tapered front rail produced from 1.7 mm thick DP600 steel was used for the trigger hole location investigation. Front rails with different trigger spacing and sizes were tested using VIA sled test facility and the crash progress was simulated using a commercial code RADIOSS. The strain rate, welding and forming effects were incorporated in the front rail modeling.
X