Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Development of Shear Fracture Criterion for Dual-Phase Steel Stamping

Forming Limit Diagrams (FLD) have been widely and successfully used in sheet metal stamping as a failure criterion to detect localized necking, which is the most common failure mechanism for conventional steels during forming. However, recent experience from stamping Dual-Phase steels found that, under certain circumstances such as stretching-bend over a small die radius, the sheet metal fails earlier than that predicted by the FLD based on the initiation of a localized neck. It appears that a different failure mechanism and mode are in effect, commonly referred to as “shear fracture” in the sheet metal stamping community. In this paper, experimental and numerical analysis is used to investigate the shear fracture mechanism. Numerical models are established for a stretch-bend test on DP780 steel with a wide range of bend radii for various failure modes. The occurrences of shear fracture are identified by correlating numerical simulation results with test data.
Technical Paper

Material Property and Formability Characterization of Various Types of High Strength Dual Phase Steel

As a result of the increasing usage of high strength steels in automotive body structures, a number of formability issues, particularly bend and edge stretch failures, have come to the forefront of attention of both automotive OEMs and steel makers. This investigation reviews these stamping problems and attempts to identify how certain material properties and microstructural features relate to forming behavior. Various types of dual phase steels were evaluated in terms of tensile, bending, hole expansion, limiting dome height, and impact properties. In addition, the key microstructural differences of each grade were characterized. In order to understand the material behavior under practical conditions, stamping trials were conducted using actual part shapes. It was concluded that material properties can be optimized to maximize local formability in stamping applications. The results also emphasize that the dual phase classification can encompass a broad range of property variations.
Technical Paper

Determination of the Forming Limit Curve Using Digital Image Correlation - Comparison of Different Approaches to Pinpoint the Onset of Localized Necking

Digital image correlation (DIC) technique has been proved as a potent tool to determine the forming limit curve (FLC) of sheet metal. One of the major technical challenges using the DIC to generate FLC is to accurately pinpoint the onset of localized necking from the DIC data. In addition to the commonly applied ISO 12004-2 standard, a plethora of other DIC data analysis approaches have been developed and used by various users and researchers. In this study, different approaches, including spatial, temporal and hybrid approaches, have been practiced to determine the limit strains at the onset of localized necking. The formability of a 980GEN3 sheet steel was studied in this work using the Marciniak cup test coupled with a DIC system. The resulting forming limits determined by different approaches were compared. Strengths and limitations of each approach were discussed. In addition, the conventional finger-touch approach was excised using specimens with perceivable localized necks.
Technical Paper

Effects of AHSS Sheared Edge Conditions on Crash Energy Absorption in Component Bend Test

Edge fracture of advanced high strength steels (AHSS) can occur in both the stamping process and the crash event. Fracture due to poor sheared edge conditions in the stamping process was reduced with a recently developed optimal shearing process for AHSS. Currently, the improvement in the energy absorption due to the improved edge condition during crashes performed under different loading conditions had not been closely verified. The purpose of this study is to design and build a miniature component of AHSS and a three-point bending test for investigating the influence of various conditions of the sheared edge on the energy absorption in crashes. AHSS including DP600, TRIP780, DP980 and DP1180 were selected in the study. A small channel component was developed and fabricated using DP980 to simulate key features of the B-pillar. The exposed non-constrained, as-sheared edge was subject to stretch bending forces in three-dimensional space during the three-point bending test.
Technical Paper

Hydroforming Simulation for High Strength Steel Tubes

Tubular hydroforming is being used extensively for manufacturing various automotive structural parts due to its weight reduction and cost saving potentials. The use of a thin wall advanced high strength steel (AHSS) tube offers great potential to further expand hydroforming applications to upper body components. In this study, numerical and experimental investigations are conducted on a free expansion hydroforming case using various AHSS thin wall tubes. The results are also compared with tubes made from conventional steels and different tubing processes. The appropriate use of the forming limit in hydroforming is also discussed. In numerical study, a new simulation method is developed and validated to handle tube material properties input. Good correlations to the experimental data have been obtained. The new method only requires the flat sheet stress–strain curves as the basic material property. Tube and weld properties are modeled as a pre-strained tubular blank.
Technical Paper

Lightweight Closure Assemblies Utilizing Structural Foam

The primary goal of closure design is to achieve a functional, lightweight assembly, while also meeting stiffness, crash, and dent resistance targets. Typical automotive closure assemblies, such as liftgates, decklids, hoods, and doors, usually consist of an inner panel, outer panel, and miscellaneous reinforcements. There are also many attachment methods used; hem flange, spot-weld, laser weld, adhesive, hinges, latches, struts, and bolts. This paper investigates the weight reduction benefits gained from utilizing structural foam to increase stiffness performance. Finite element analysis (FEA) is applied to baseline and redesigned versions of a liftgate, door, and decklid assembly to measure the stiffness performance with structural foam application. Performance is measured in terms of maximum displacement and Von Mises stresses incurred from several loading conditions.
Technical Paper

Numerical Investigation of Effects of Frame Trigger Hole Location on Crash Behavior

The front rail plays a very important role in vehicle crash. Trigger holes are commonly used to control frame crush mode due to their simple manufacturing process and flexibility for late changes in the product development phase. Therefore, a study, including CAE and testing, was conducted on a production front rail to understand the effects of trigger hole shape, size and orientation. The trigger hole location in the front rail also affects crash performance. Therefore, the effect of trigger hole location on front rail crash behavior was studied, and understanding these effects is the main objective of this study. A tapered front rail produced from 1.7 mm thick DP600 steel was used for the trigger hole location investigation. Front rails with different trigger spacing and sizes were tested using VIA sled test facility and the crash progress was simulated using a commercial code RADIOSS. The strain rate, welding and forming effects were incorporated in the front rail modeling.
Technical Paper

A Benchmark Test for Springback: Experimental Procedures and Results of a Slit-Ring Test

Experimental procedures and results of a benchmark test for springback are reported and a complete suite of obtained data is provided for the validation of forming and springback simulation software. The test is usually referred as the Slit-Ring test where a cylindrical cup is first formed by deep drawing and then a ring is cut from the mid-section of the cup. The opening of the ring upon slitting releases the residual stresses in the formed cup and provides a valuable set of easy-to-measure, easy-to-characterize springback data. The test represents a realistic deep draw stamping operation with stretching and bending deformation, and is highly repeatable in a laboratory environment. In this study, six different automotive materials are evaluated.
Technical Paper

Automotive Applications of Stretch Flange High Strength Steel

A typical forming operation of chassis components (control arms, cross members, etc.) often involves edge stretching and/or hole expansion. As a result, the edge split is a common forming failure mode. To overcome this problem, Japanese and European automakers use stretch flange high strength (SFHS) steel due to its high strength and excellent edge stretch capability. Recently, SFHS steel has gained greater attention in North America and is currently being used for upper and lower control arm applications. This paper includes a discussion on general edge stretch issues in forming operations, including material data that demonstrate the higher stretch limit of SFHS steel as compared to other high strength steels. In a case study, SFHS steel is applied to a control arm and finite element analysis (FEA) is conducted to evaluate forming and structural performance.
Technical Paper

Effects of Nitrided and Chrome Plated Die Surface Roughness on Friction in Bending Under Tension

Different die surface polish conditions result in a noticeable effect on material flow in stamping, which can lead to splitting, wrinkling, or other surface stretching issues associated with different friction conditions. These occurrences are not only limited to the non-coated dies, but also nitrided and chrome plated dies. To ensure quality control of the stamped parts, the die conditions corresponding to different polishing procedures need to be developed based on measurable parameters such as surface roughness (Ra). The intent of this study is to investigate the effects of nitrided and chrome plated die surface roughness on friction. The Bending-Under-Tension (BUT) test was conducted to simulate the stamping process due to the test’s versatility and flexibility in changing test parameters. The test involves moving sheet metal across a 3/8-inch diameter pin, which substitutes for a die surface. The pin can be modified by material, heat treatment, coating, and surface roughness.