Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Design Analysis of High Power Density Additively Manufactured Induction Motor

2016-09-20
2016-01-2061
Induction machines (IM) are considered work horse for industrial applications due to their rugged, reliable and inexpensive nature; however, their low power density restricts their use in volume and weight limited environments such as an aerospace, traction and propulsion applications. Given recent advancements in additive manufacturing technologies, this paper presents opportunity to improve power density of induction machines by taking advantage of higher slot fill factor (SFF) (defined as ratio of bare copper area to slot area) is explored. Increase in SFF is achieved by deposition of copper in much more compact way than conventional manufacturing methods of winding in electrical machines. Thus a design tradeoff study for an induction motor with improved SFF is essential to identify and highlight the potentials of IM for high power density applications and is elaborated in this paper.
Technical Paper

Design Analysis of High Power Density Additively Manufactured Induction Motor

2016-09-20
2016-01-2063
Induction machines (IM) are considered work horse for industrial applications due to their rugged, reliable and inexpensive nature; however, their low power density restricts their use in volume and weight limited environments such as an aerospace, traction and propulsion applications. Given recent advancements in additive manufacturing technologies, this paper presents opportunity to improve power density of induction machines by taking advantage of higher slot fill factor (SFF) (defined as ratio of bare copper area to slot area) is explored. Increase in SFF is achieved by deposition of copper in much more compact way than conventional manufacturing methods of winding in electrical machines. Thus a design tradeoff study for an induction motor with improved SFF is essential to identify and highlight the potentials of IM for high power density applications and is elaborated in this paper.
Technical Paper

Topology Optimized End Winding for Additively Manufactured Induction Motor with Distributed Winding

2016-09-20
2016-01-2060
It is desired to reduce stator end winding length and mass to reduce associated resistive losses, increase efficiency and power density of an induction motor. With recent advancements in additive manufacturing technology, it is possible to deposit copper conductive paths and insulation layers in a selective controlled manner. This enables more compact end winding designs. The objective of this paper is to present a topology optimization based approach for design of stator end winding to minimize its overall length, volume and mass. Design approach and parametric study results for a representative stator design are presented in this paper. By reducing length of end winding, efficiency and power density of the induction motor can be increased enabling benefit realization for weight critical aerospace applications, incorporation in electric vehicle market and potentially reducing rare-earth dependency.
Technical Paper

Photocatalytic Oxidation Technology for Trace Contaminant Control in Aircraft and Spacecraft

1996-07-01
961520
A novel approach to vehicle airborne contaminant removal based on UV illumination of the photoactive semiconductor TiO2 (titania) at room temperature is described. This paper describes fundamental surface chemistry measurements, prototype development, and theoretical models needed for practical application of the technology. The process of incorporating this information into the design of effective air-purifiers for cabin air applications is described.
Technical Paper

Fuel Additives to Inhibit Sulfidation

1976-02-01
760919
Sulfidation attack, the accelerated oxidation of gas turbine components, occur when the surfaces are covered with a fused alkali salt. Oxide ions present in the melt, react with and render the normally protective oxide scale ineffectual allowing the salt to oxidize the substrate. Turbogard™, a chromium containing fuel additive, attenuates sulfidation corrosion. Turbogard reacts with and alters the oxide ion content of the corrosive melt. Even in the presence of corrosive lead deposits, hot corrosion attenuation was observed.
X