Refine Your Search

Topic

Author

Search Results

Viewing 1 to 17 of 17
Technical Paper

The impacts of Diesel cycle engines on the operating costs of the Cessna 172 Skyhawk and JT-A aircraft.

2020-01-13
2019-36-0321
Diesel engines have been used on the aeronautical market for a long time. Despite this fact, there are few studies showing the potential cost savings of using this type of technology. In this way, the goal of this paper is to find out whether or not it is advantageous to use an Otto or Diesel cycle engine on general aviation light aircraft. It is well known that both of them have pros and cons, however, the possibility of using Jet A-1 (kerosene) as fuel gives the Diesel engine a clear advantage in a market like Brazil, where the price of the regular piston fuel (AvGas) keeps rising to astonishing values. Throughout this paper, a detailed study of the fixed and variable costs of two similar aircraft, both Cessnas 172 equipped with Otto and Diesel cycle engines is conducted, comparing fuel consumption, performance levels, and other factors.
Technical Paper

Development of a Bench Durability Test to the Exhaust Attachment System

2010-10-06
2010-36-0005
For many years durability tests engineers have worked in the sense of improving the tests that, at first, were performed using public roads with high time consumption and low reproducibility. Proving grounds were specially designed to reproduce the most important efforts to the body and chassis systems, but time problem was still there. Time and cost reduction allied to the needs of quality, reliability and reproducibility improvement led the engineers to develop methods and equipments to reproduce the durability tests in the lab. In this way the road simulators appear as a powerful tool able to perform durability tests with high reliability, self-controlled and with very low time compared to the road tests. At this scenery bench tests were also created to components and systems mainly used to anticipate problems before a whole vehicle test.
Technical Paper

Constructive Parameters Analysis of Combustion Pre-Chamber Adapted in Torch-Ignition System of Otto Cycle Engine

2003-11-18
2003-01-3713
The torch ignition system consists in the inflammation of the air/fuel mixture by means of gases jet flames that constitute ignition lines. Engines with this feature have a cavity or combustion pre-chamber, physically separate from the main chamber. In these systems happens a larger turbulence generation, due the movement of the gases inside the pre-chamber and through the interconnection orifices. The charge stratification, by means of an auxiliary inlet fuel system, also contributes for the fast and insurance inflammation of lean mixtures and the most varied combustible, including the difficult direct spark ignition fuels. This work presents the design elaboration of combustion pre-chamber from an analysis of the influence of the main constructive parameters in the combustion process.
Technical Paper

Design and Combustion Characteristics of an Ethanol Homogeneous Charge Torch Ignition System for a Single-cylinder Optical Engine

2016-10-25
2016-36-0130
The trends in the development of spark ignition engines leads to the adoption of lean mixtures in the combustion chamber. Torch ignition systems have potential to reduce simultaneously the NOx and CO emissions, while keeping the fuel conversion efficiency at a high level. This study aims to design and analyze a torch ignition system running with ethanol on lean homogeneous charge, adapted to an Otto cycle single-cylinder engine with optical visualization. The main objective is to achieve combustion stability under lean burn operation and to expand the flammability limit for increasing engine efficiency by means of redesigning the ignition system adapting a pre-chamber to the main combustion chamber. Experiments were conducted at constant speed (1000 rpm) using ethanol (E100) as fuel, for a wide range of injection, ignition and mixture formation parameters. Specific fuel consumption and combustion stability were evaluated at each excess air ratio.
Technical Paper

Stratified Torch Ignition Engine: Combustion Analysis

2016-10-25
2016-36-0380
The Stratified Torch Ignition (STI) engine is capable of operating with lean mixture and low cyclic variability. These characteristic significantly decreases fuel consumption and emission levels. In the STI engine the combustion starts at a pre-combustion chamber where a stoichiometric mixture is ignited by an electrical spark. Pressure increase in the pre-combustion chamber push the combustion jet flames through a calibrated nozzle to be precisely targeted into the main chamber. These combustion jet flames endowed with high thermal and kinetic energy assures a fast and stable combustion of a lean mixture formed at the main chamber. A STI prototype were built and tested. The main combustion parameters were obtained from the in-cylinder pressure measured during the experiments. A combustion analysis is carried out to explain the significant improvement of the STI engine in regard to the baseline engine which was used as workhorse for the prototype engine construction.
Technical Paper

Stratified Torch Ignition Engine: Performance Analysis

2016-10-25
2016-36-0379
Global climate change and an increasing energy demand are driving the scientific community to further advance internal combustion engine technology. Invented by Sr. Henry Ricardo in 1918 the torch ignition system was able to significantly decrease engine’s fuel consumption and emission levels. Since the late 70s, soon after the Compound Vortex Controlled Combustion (CVCC) created by Honda, the torch ignition system R&D almost ceased due to the issues encountered by very complex and costly mechanic control systems that time. This work presents a stratified torch ignition prototype endowed with a sophisticated electronic control systems and components such as electro-injectors from direct injection systems placed on the pre-combustion chamber. The torch ignition prototype was tested and its performance are presented and compared with the baseline engine, which was used as a workhorse for the prototype engine construction.
Technical Paper

Simulation of Fuel Consumption and Emissions for Passenger Cars and Urban Buses in Real-World Driving Cycles

2016-10-25
2016-36-0443
Reducing environmental pollution by the transport sector has been influenced according to the increasingly restrictions imposed by regulatory standards. For this, legislation such as Euro (at global level) and Proconve (at local level) set new limits each new phase, usually stipulating reductions in the levels of greenhouse gas emissions. Compliance with these requirements is seen with the vehicle or engine ratings working through the conditions imposed by a standard test cycle. However, standard driving conditions often do not represent the real-world driving conditions, being influenced by relief, traffic lights and other peculiarities of each city or route. This paper aims to compare real-world driving cycles of urban bus and passenger car in the city of Santa Maria, in southern Brazil, with the conditions used for light gasoline vehicles and heavy diesel vehicles approval.
Technical Paper

Influence of Inflation Pressure of a Tire on Rolling Resistance and Fuel Consumption

2017-11-07
2017-36-0095
Resistive forces are a great source of fuel consumption in vehicles. In particular, rolling resistance represent the major resistance force at low speeds. It is highly influenced by the inflation pressure of the tire and vertical load over it. In the present work, a computer model is created with the objective of investigating the influence of tire inflation pressure on fuel consumption and rolling resistance force. Pressure is varied and parameters analyzed at different vehicle speeds for two different calculation methods. Results show significant decrease in fuel consumption and rolling resistance force as inflation pressure is augmented.
Technical Paper

Multi-Cylinder Torch Ignition System Operating With Homogeneous Charge - Performance and CO2

2017-11-07
2017-36-0250
Global trends in the development of spark ignition internal combustion engines lead to the adoption of solutions that reduce CO2 emissions and fuel consumption. Downsizing is a well-established path for this reduction, but it is necessary to use other technologies in order to achieve these ever more rigorous levels. A homogeneous torch ignition system is a viable alternative for reducing CO2 emissions with a combined reduction in specific fuel consumption and increased thermal efficiency. Thus a prototype adapted from an Otto engine with four cylinders is used for analysis. The performance and CO2 emission reference data were initially obtained with the baseline engine operating with a stoichiometric mixture. Then for the same conditions of BMEP, angular velocity and gradual lean of the mixture from the stoichiometry, the results of the adapted system are obtained.
Technical Paper

Combustion Analysis of a Current Vehicular Engine Operating in Lean Air-Fuel Conditions

2017-11-07
2017-36-0207
Environmental issues and energy security are critical concerns of the most countries. According researchers, excessive growth of land vehicles is one of the biggest contributors to global air pollution and oil reserves reduction. In this context, the use of lean burn technologies emerges as a promising strategy, allowing lower fuel consumption and pollutants emissions. Present work aims to analyze the behavior of a current commercial engine, gasoline fueled, varying the air-fuel ratio without the use of lean burn ignitions technologies. Analysis was performed through bench dynamometer tests, evaluating cylinder pressure, exhaust gas temperature, fuel conversion efficiency, cycle thermal efficiency, coefficient of variation in indicated mean effective pressure, apparent heat release rate, flame development angle and burn duration.
Technical Paper

Design and Construction Methodology of a Stratified Torch Ignition System

2013-10-07
2013-36-0562
It developed a design and construction methodology of a stratified charge torch ignition system for an Otto engine aiming fuel consumption and pollutant emission reduction. The torch ignition system is made of a combustion pre-chamber equipped with a direct fuel injector, an air injector and a spark plug. Fuel is directly injected in the pre-chamber aiming the formation of a lightly rich air fuel mixture. The combustion process starts in the pre-chamber and as the pressure rises, combustion jet flames are produced through interconnection nozzles into the main chamber. The high thermal energy of the jet flames reduces the combustion time, increases the combustion efficiency and allows the engine to efficiently burn lean air fuel mixture of several kinds of fuel in the main chamber, even those that are difficult to ignite. After the combustion takes place in the pre-chamber, air is also injected to help the exhaust process of the combustion products of the previous cycle.
Technical Paper

Estimation of Vehicle Tire-Road Contact Forces: A Comparison between Artificial Neural Network and Observed Theory Approaches

2018-04-03
2018-01-0562
One of the principal goals of modern vehicle control systems is to ensure passenger safety during dangerous maneuvers. Their effectiveness relies on providing appropriate parameter inputs. Tire-road contact forces are among the most important because they provide helpful information that could be used to mitigate vehicle instabilities. Unfortunately, measuring these forces requires expensive instrumentation and is not suitable for commercial vehicles. Thus, accurately estimating them is a crucial task. In this work, two estimation approaches are compared, an observer method and a neural network learning technique. Both predict the lateral and longitudinal tire-road contact forces. The observer approach takes into account system nonlinearities and estimates the stochastic states by using an extended Kalman filter technique to perform data fusion based on the popular bicycle model.
Technical Paper

Combustion influence of a pre-chamber ignition system in a SI commercial engine

2018-09-03
2018-36-0115
Environmental policies and fuel costs have driven the development of new technologies for internal combustion engines. In this sense, the use of mixtures with small portions of fuel allows lower fuel consumption and pollutants emissions, emerging as a promising strategy. Despite the advantages, lean burn requires a larger energy source to provide satisfactory flame propagation speed and consequently a stable combustion. The use of pre-chamber ignition systems (PCIS) has been used in SI engines to assist the start of combustion of lean mixtures, in which a supplementary fuel system can stratify the amount of either liquid or gaseous fuels supplied to the pre-chamber. In this context, this paper aims to evaluate combustion characteristics of a commercial engine with the use of stratified PCIS operating with impoverished mixtures of ethanol-air in main-chamber and hydrogen assistance in pre-chamber.
Technical Paper

Combustion analysis in a SI engine with homogeneous and stratified pre-chamber system

2018-09-03
2018-36-0112
Extensive studies of pre-chamber ignition systems in internal combustion engines have proven its effectiveness in reduction of fuel consumption and improvement in several combustion parameters. Considering the different types of pre-chamber configurations, this paper aims to compare the combustion in a SI engine with both homogeneous and stratified pre-chamber ignition systems. To achieve this objective a system with the ability to control the hydrogen injection in the pre-chamber was built. This system was installed in a multi-cylinder Ford Sigma 1.6L engine and tested in a dynamometric room. Tests consisted in imposing a constant rotation and IMEP to test three conditions: standard spark ignition, pre-chamber ignition system without fuel injection (homogenous) and with hydrogen injection (stratified). It was possible to identify that with the use of pre-chamber ignition system there is a reduction in specific fuel consumption and in the combustion duration.
Technical Paper

Comparison between Durability Tests Performed in Field and in Lab for Powertrain Suspension System

2014-09-30
2014-36-0174
Currently the durability test of FIAT vehicles powertrain suspension system is performed in pattern roads that reproduces conditions which the vehicle is submitted by costumer during product life cycle. The test done in these roads is time consuming and expensive. Experimental Engineers, for quite some time, have endeavored in doing automotive components fatigue tests in the lab. These environments provide more controlled test conditions and enable a less time consuming test. This work analyzes, over one of the three powertrain system attachment points of a passenger vehicle, differences that are found between a test performed in pattern roads and a test performed in a 6DOF road simulator. As conclusion, presents alternatives to perform the test of these components in lab using a 6DOF road simulator.
Technical Paper

Effects of the Engine Cooling System Design on Fuel Consumption - a Numerical Assessment

2021-03-26
2020-36-0182
One of the biggest challenges for mobility engineers today is the reduction of fuel consumption while keeping or even improving the automobiles propulsion system performance. A great part of the current powertrain components is developed to work at high engine loads and extreme environmental conditions, among which the engine cooling system, for example. As the overall vehicle efficiency depends directly on the thermal system design, it is important to make a careful investigation of the external ambient to develop this system on the best possible way, seeking to minimize the negative impacts at normal driving situations, which represents the most of the vehicle's life cycle. In this regard, the present paper reports a numerical study about the impacts of different cooling system hardware configurations on the fuel consumption of a turbocharged flex-fuel engine.
Technical Paper

Study of Unmanned Supersonic Aircraft Configuration

2014-09-30
2014-36-0193
The aim of this work is to present the preliminary performance studies of the unmanned, lightweight (less than 10 kg), supersonic research aircraft. The studies comprise the typical mission for the aircraft's first supersonic version, based on the aerodynamic, thrust, and mass characteristics presented in a previous work. The aircraft, named as “Pohox”, is an Unmanned Air Vehicle, or “UAV”, and is intended to be the flying test bed for a multi cycle engine capable to provide thrust in subsonic, transonic and supersonic regimes. Different tools have been developed to perform the analysis. In the analysis, different flight paths are considered in order to provide insights in terms of fuel consumption, altitude and speed gain. Aircraft ‘excess power’ diagrams have been generated, to provide guidance for the definition of the flight paths to be analyzed. Drag dependency with Mach number is considered in the analysis.
X