Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Development of a Bench Durability Test to the Exhaust Attachment System

2010-10-06
2010-36-0005
For many years durability tests engineers have worked in the sense of improving the tests that, at first, were performed using public roads with high time consumption and low reproducibility. Proving grounds were specially designed to reproduce the most important efforts to the body and chassis systems, but time problem was still there. Time and cost reduction allied to the needs of quality, reliability and reproducibility improvement led the engineers to develop methods and equipments to reproduce the durability tests in the lab. In this way the road simulators appear as a powerful tool able to perform durability tests with high reliability, self-controlled and with very low time compared to the road tests. At this scenery bench tests were also created to components and systems mainly used to anticipate problems before a whole vehicle test.
Technical Paper

Corrosion Resistance of Automotive Ecological Fuel Tanks in Contact With Hydrated Ethanol Fuel

2012-10-02
2012-36-0387
For metallic tanks in contact with aqueous solution, it is always observed the presence of electrochemical corrosion. This process can cause both economic and environmental damage. In the automotive industry, fuel tanks systems have been studied in order to propose new materials to replace the plastic tanks or tanks with metallic coatings. Plastic tanks have the disadvantage of not being recyclable. In the other hand, for metallic coated tanks, tin is used as a coat material and, for this reason, the external tank side must be painted, making its productive process more expensive and generating higher amount of waste. Nowadays, organic-metallic coated tanks, in which, nickel and aluminum are the metals present, can be found. These coatings show potential application; because they do not use heavy metals in their composition and they do not require external painting, allowing a lower production cost.
Technical Paper

Thermoelectric Generator Applied to a Baja SAE Vehicle

2011-10-04
2011-36-0373
The limited thermal efficiency in internal combustion engines provides a partial transformation of fuel energy in net power. The heat lost through the exhaust gases represent a significant portion of energy looses. The Seebeck Effect is the direct conversion of temperature differences between two dissimilar metals or semiconductors into electrical voltage. The present study demonstrates the application of thermoelectric generators technology in Baja SAE vehicles to recovery exhaust heat looses, using thermal energy converter devices. The electrical energy produced in Seebeck Effect Cells, assembly in engine exhaust manifold, is conditioned and applied in vehicle batteries and supply energy consumption during vehicle operation. This action could increase the vehicle energy efficiency by the recovery the thermal energy dissipated. This extra power supply makes possible the reduction of on board batteries charge capacity and also recharges them without external power sources.
Technical Paper

Commercial Vehicle Comfort under Human Vibration Perspective

2011-10-04
2011-36-0269
This paper discusses the importance of vibration transmitted from the ground to the driver from the perspective of human whole-body vibration (WBV). The scope of analysis is to compare the main vehicle frequencies with those important from the human vibration health and comfort point of view. That was performed by mapping the vibration transmissibility present in different sub sections of the vehicle. The first is the transmissibility between the axles and the chassis rail, the following between the chassis rail and the cabin. The last would be between the cabin and the drivers' seat, although that was not possible from the acquisition point of view. The vehicles measured have mechanical suspension and elastomeric cabin coupling. It is known that all suspension systems in vehicle are highly nonlinear, although here linear dynamic analysis methods were used.
Technical Paper

Estimation of Vehicle Tire-Road Contact Forces: A Comparison between Artificial Neural Network and Observed Theory Approaches

2018-04-03
2018-01-0562
One of the principal goals of modern vehicle control systems is to ensure passenger safety during dangerous maneuvers. Their effectiveness relies on providing appropriate parameter inputs. Tire-road contact forces are among the most important because they provide helpful information that could be used to mitigate vehicle instabilities. Unfortunately, measuring these forces requires expensive instrumentation and is not suitable for commercial vehicles. Thus, accurately estimating them is a crucial task. In this work, two estimation approaches are compared, an observer method and a neural network learning technique. Both predict the lateral and longitudinal tire-road contact forces. The observer approach takes into account system nonlinearities and estimates the stochastic states by using an extended Kalman filter technique to perform data fusion based on the popular bicycle model.
Technical Paper

Comparison between Durability Tests Performed in Field and in Lab for Powertrain Suspension System

2014-09-30
2014-36-0174
Currently the durability test of FIAT vehicles powertrain suspension system is performed in pattern roads that reproduces conditions which the vehicle is submitted by costumer during product life cycle. The test done in these roads is time consuming and expensive. Experimental Engineers, for quite some time, have endeavored in doing automotive components fatigue tests in the lab. These environments provide more controlled test conditions and enable a less time consuming test. This work analyzes, over one of the three powertrain system attachment points of a passenger vehicle, differences that are found between a test performed in pattern roads and a test performed in a 6DOF road simulator. As conclusion, presents alternatives to perform the test of these components in lab using a 6DOF road simulator.
X