Refine Your Search

Topic

Author

Search Results

Technical Paper

Integrated Cooling Systems for Passenger Vehicles

2001-03-05
2001-01-1248
Electric coolant pumps for IC engines are under development by a number of suppliers. They offer packaging and flexibility benefits to vehicle manufacturers. Their full potential will not be realised, however, unless an integrated approach is taken to the entire cooling system. The paper describes such a system comprising an advanced electric pump with the necessary flow controls and a supervisory strategy running on an automotive microprocessor. The hardware and control strategy are described together with the simulation developed to allow its calibration and validation before fitting in a B/C class European passenger car. Simulation results are presented which show the system to be controllable and responsive to deliver optimum fuel consumption, emissions and driver comfort.
Technical Paper

Optimising Cooling System Performance Using Computer Simulation

1997-05-19
971802
This paper presents a lumped parameter method for whole circuit simulation of vehicle cooling systems using the Bathfp simulation environment. The dynamic performance of a 1.8 litre internal combustion engine cooling system is examined. The simulation is compared with experimental data from a test rig incorporating a non-running engine with external heat source and a good correspondence is achieved. The background to the modelling approach is described. It is shown that simulating cooling systems with Bathfp offers the designer the flexibility to assess component sensitivity and changes in system configuration which will aid the process of cooling system optimisation.
Technical Paper

Incorporating Nucleate Boiling in a Precision Cooling Strategy for Combustion Engines

1997-05-19
971791
Precision cooling has a number of advantages over the conventional cooling of combustion engines. It is primarily used to prevent component failures and is generally intended to create an even distribution of temperature within the cylinder head and block. This leads to lower thermal stresses and higher component durability. Precision cooling in the form of forced convection and nucleate boiling can be used to greater effect than that of traditional precision cooling concentrating on forced convection only. This paper describes the analytical and experimental precision cooling strategy that has been used to investigate nucleate and transition boiling. Analytical details of the models are described and preliminary experimental data is provided for comparison. The major finding indicates that the diameter of the internal cooling passage is one of the significant factors that influences the critical heat flux.
Technical Paper

Design of a Feedback Controlled Thermostat for a Vehicle Cooling System

1996-08-01
961823
In traditional liquid cooled internal combustion engine systems, the coolant temperature is controlled by a thermostat which governs the coolant flow rate to the radiator. The thermostat is effectively a directional control valve in which the spool displacement is used to direct flow to the radiator. The coolant temperature is primarily a function of four parameters, namely radiator and thermostat characteristics, coolant flow rate and ambient temperature. By employing closed-loop feedback, the coolant temperature can be controlled according to environmental conditions. To achieve this goal the overall system must be correctly designed. That is the issue discussed in this paper. The increasing use of simulation for both circuit and component analysis in the automtive industry has come about due to the requirement for acceptable transient as well as steady state system performance.
Technical Paper

A Neural Network for Fault Recognition

1993-03-01
930861
In both the marine and power industries there are now a choice of off-the-shelf condition monitoring systems available that utilise artificial intelligence techniques to analyse engine performance data. These systems are proving to be a valuable aid in optimising performance and reducing down-time by assisting with maintenance planning. These systems rely on careful monitoring of an engine's performance, for instance engine speed, fuelling, boost pressure, turbine inlet pressure, turbocharger speed, and exhaust temperature. With this data, they utilise a variety of interpolation and pattern recognition algorithms to compare it with previously recorded data stored in lookup tables. This paper describes how a neural network approach can be used as a cheap alternative for the analysis of this data, greatly reducing the need for such large lookup tables and complex pattern recognition programs.
Technical Paper

A Hydraulic Tappet with Variable Timing Properties

1993-03-01
930823
A new hydraulic cam follower with variable valve timing (VVT) properties is described. Experimental results show that the point of closure of the valve may be delayed as a linear function of engine speed without external control. No other parameter of the valve event is modified by the device. An obvious application is the control of intake valve timing for engines with a wide speed range, where the point of valve closure could be scheduled with engine speed in order to maximise the trapped mass, hence improving the torque curve at low and high speeds. The device is considered for application to the Ford 2.5 litre DI diesel engine, where it may be used to retard inlet valve closure from close to bottom dead centre (BDC) at cranking speed to 50-60 deg after BDC at rated speed.
Technical Paper

A Comparison Between Alternative Methods for Gas Flow and Performance Prediction of Internal Combustion Engines

1992-09-01
921734
A comprehensive general purpose engine simulation model has been successfully developed. This paper reports on an investigation undertaken to compare the accuracy and computational efficiency of four alternative methods for modelling the gas flow and performance in internal combustion engines. The comparison is based on the filling-and-emptying method, the acoustic method, the Lax-Wendroff two-stage difference method and the Harten-Lax-Leer upstream method, using a unified treatment for the boundary conditions. The filling-and-emptying method is the quickest method among these four methods, giving performance predictions with reasonably good accuracy, and is suitable for simulating engines using not highly tuned gas exchange systems. Based on the linearized Euler equations, the acoustic method is capable of describing time-varying pressure distributions along a pipe.
Technical Paper

Factors Affecting Test Precision in Latest Vehicle Technologies

2018-04-03
2018-01-0640
Demonstrating the cost/benefits of technologies in the automotive sector is becoming very challenging because the benefits from technologies are sometimes of similar magnitude to testing precision. This paper aims to understand vehicle-borne imprecision and the effect of this on the quality of chassis dynamometer (CD) testing. Fuel consumption and NOx emissions precision is analyzed for two diesel vehicles with particulate filter and SCR systems. The two vehicles were tested on a high precision CD facility over the NEDC (New European Drive Cycle) and WLTC (World harmonized Light-duty Test Cycle) cycles. The CD base precision of testing was characterized between 0.6-3% depending on the cycle phase. A novel application of multi-variate statistical analysis was used to identify the factors that affected testing precision, allowing isolation of small differences that were not obvious when conducting cycle-averaged or cycle-phase-averaged analysis.
Technical Paper

Position Estimation and Autonomous Control of a Quad Vehicle

2016-09-14
2016-01-1878
The major contribution of this paper is the general description of a complete integrating procedure of autonomous vehicle system. Using Robot Operating System (ROS) as the framework, process from senor integration to path planning and path tracking were performed. Based on an off-road All-Terrain Vehicle, an Extended Kalman filter based autonomous control strategy was developed on the ROS. Both the position estimation and autonomous control were performed on the ROS platform. For the position estimation phase, sensory measurements from GPS, IMU and wheel odometry were acquired and processed on ROS. In accordance with the ROS architecture, separate packages were developed for each sensor to gather and publish corresponding measurements. Furthermore, Extended Kalman filtering was performed to fuse all sensory measurements to achieve an optimizing accuracy.
Technical Paper

A new method to simulate the octane appetite of any spark ignition engine.

2011-08-30
2011-01-1873
The octane appetite of an SI engine can be expressed in terms of an Octane Index: OI = (1−K) RON + K MON where K is a constant for a given operating condition and depends only on the pressure and temperature variation in the engine (it is not a property of the fuel). Experimental measurements of K values can be costly and time consuming. This paper reports the development of a new K-value simulation method that can be applied to any spark ignition engine given basic engine data. Good agreement between simulation and experimental results suggests the method is reliable and can be applied to a wide range of engines.
Technical Paper

The Effects of Engine Thermal Conditions on Performance, Emissions and Fuel Consumption

2010-04-12
2010-01-0802
Engine thermal management systems (TMS) are gaining importance in engine development and calibration to achieve low fuel consumption and meet future emissions standards. To benefit from their full potential, a thorough understanding of the effects on engine behavior is necessary. Steady state tests were performed on a 2.0L direct injection diesel engine at different load points. A design of experiments (DoE) approach was used to conduct exhaust gas recirculation (EGR) and injection timing swings at different coolant temperatures. The effect of the standard engine controller and calibration was observed during these tests. The injection timing strategy included a significant dependency on coolant temperature, retarding injection by about 3° crank angle between coolant temperatures of 70°C and 86°C. In contrast, EGR strategy was essentially independent of coolant temperature, though physical interactions were present due in part to the EGR cooler.
Technical Paper

The Effect of Forced Cool Down on Cold Start Test Repeatability

2009-06-15
2009-01-1976
Increasing the number of cold-start engine cycles which could be run in any one day would greatly improve the productivity of an engine test facility. However with the introduction of forced cooling procedures there is the inherent risk that test-to-test repeatability will be affected. Therefore an investigation into the effects caused by forced cooling on fuel consumption and the temperature distribution through the engine and fluids is essential. Testing was completed on a 2.4 litre diesel engine running a cold NEDC. The test facility utilises a basic ventilation system, which draws in external ambient air, which is forced past the engine and then drawn out of the cell. This can be supplemented with the use of a spot cooling fan. The forced cool down resulted in a much quicker cool down which was further reduced with spot cooling, in the region of 25% reduction.
Technical Paper

Development and Testing of a Low Cost High Performance Hybrid Vehicle Electric Motor

2013-04-08
2013-01-1760
A large proportion of automotive engineering research is focused on the reduction of vehicle fuel consumption thereby reducing CO₂ emissions. One effective method is to use an electric motor in conjunction with the engine (hybrid electric vehicle). This paper details the development and performance characteristics of a low cost hybrid vehicle electric motor, originally developed for the retrofit hybrid vehicle market, although it is intended to be suitable for many applications. The motor is a low cost, scalable, high performance motor, primarily for automotive applications. The motor has been designed to make it stackable for higher power or torque requirements. The use of lightweight materials and innovative cooling designs are novel to this motor. Results obtained from extensive testing of the motor are detailed in the paper including the efficiency map, power and torque curves, continuous powers, etc.
Technical Paper

Behaviours of a GDI Gasoline Engine during Start

2014-04-01
2014-01-1374
Vehicle start-stop systems are becoming increasingly prevalent on internal combustion engine (ICE) because of the capability to reduce emissions and fuel consumption in a cost effective manner. Thus, the ICE undergoes far more starting events, therefore, the behaviour of ICE during start-up becomes critical. In order to simulate and optimise the engine start, Model in the Loop (MiL) simulation approach was selected. A proceduralised cranking test has been carried out on a 2.0-liter turbocharged, gasoline direct injection (GDI) engine to collect data. The engine behaviour in the first 15 seconds was split into eight different phases and studied. The engine controller and the combustion system were highly transient and interactive. Thus, a controller model that can set accurate boundary conditions is needed. The relevant control functions of throttle opening and spark timing have been implemented in Matlab/Simulink to simulate the behaviours of the controller.
Technical Paper

Modelling the Performance of the Torotrak V-Charge Variable Drive Supercharger System on a 1.0L GTDI - Preliminary Simulation Results

2015-09-01
2015-01-1971
A supercharger system which boosts the engine via a direct drive from the engine crankshaft has been identified as a possible solution to improve low-end torque and transient response for a conventional turbocharged SI engine. However, the engine equipped with a fixed-ratio supercharger is not as fuel-efficient especially at high load and low speed due to the fact that a large portion of the intake mass air flow has to recirculate through a bypass valve causing inevitable mechanical and flow losses. In addition, the fixed drive ratio of the supercharger which is mainly determined by the full-load requirements might not be able to provide sufficient over-boost during a transient. The fact that a clutch may be necessary for high engine speed operation on the fixed-ratio supercharger system is another issue from the perspective of cost and NVH performance.
Technical Paper

Explore and Extend the Effectiveness of Turbo-compounding in a 2.0 litres Gasoline Engine

2015-04-14
2015-01-1279
After years of study and improvement, turbochargers in passenger cars now generally have very high efficiency. This is advantageous, but on the other hand, due to their high efficiency, only a small portion of the exhaust energy is needed for compressing the intake air, which means further utilization of waste heat is restricted. From this point of view, a turbo-compounding arrangement has significant advantage over a turbocharger in converting exhaust energy as it is immune to the upper power demand limit of the compressor. However, with the power turbine being located in series with the main turbine, power losses are incurred due to the higher back pressure which increases the pumping losses. This paper evaluates the effectiveness that the turbo-compounding arrangement has on a 2.0 litres gasoline engine and seeks to draw a conclusion on whether the produced power is sufficient to offset the increased pumping work.
Technical Paper

Improving Heat Transfer and Reducing Mass in a Gasoline Piston Using Additive Manufacturing

2015-04-14
2015-01-0505
Pressure and temperature levels within a modern internal combustion engine cylinder have been pushing to the limits of traditional materials and design. These operative conditions are due to the stringent emission and fuel economy standards that are forcing automotive engineers to develop engines with much higher power densities. Thus, downsized, turbocharged engines are an important technology to meet the future demands on transport efficiency. It is well known that within downsized turbocharged gasoline engines, thermal management becomes a vital issue for durability and combustion stability. In order to contribute to the understanding of engine thermal management, a conjugate heat transfer analysis of a downsized gasoline piston engine has been performed. The intent was to study the design possibilities afforded by the use of the Selective Laser Melting (SLM) additive manufacturing process.
Technical Paper

Study on the Effects of EGR Supply Configuration on Cylinder-to-Cylinder Dispersion and Engine Performance Using 1D-3D Co-Simulation

2015-11-17
2015-32-0816
Exhaust Gas Recirculation (EGR) is widely used in IC combustion engines for diluting air intake charge and controlling NOx emission. The rate of EGR required by an engine varies by the speed and load and control of the right amount entering the cylinders is crucial to ensure good engine performance and low NOx emission. However, controlling the amount of EGR entering the intake manifold does not ensure that EGR rate will be evenly distributed among the engine's cylinders. This can many times lead to cylinders operating at very high or low EGR rates which contradictory can deteriorate particulate matter and NOx emission. The present study analyses the cylinder-to-cylinder EGR dispersion of a 4 cylinder 2.2L EUROV Diesel engine and its effects on the combustion stability. A 1D-3D coupling simulation is performed using GT-Power and STAR-CCM+ to analyze the effects of intake manifold geometry and EGR supply configuration on the EGR homogeneity and cylinder-to-cylinder distribution.
Technical Paper

A Study on Dynamic Torque Cancellation in a Range Extender Unit

2016-04-05
2016-01-1231
A range extended electric vehicle (REEV) has the benefit of zero pipeline emission for most of the daily commute driving using the full electric mode while maintaining the capability for a long-range trip without the requirement of stop-and-charge. This capability is provided by the on-board auxiliary power unit (APU) which is used to maintain the battery state of charge at a minimum limit. Due to the limited APU package size, a small capacity engine with low-cylindercount is normally used which inherently exposes more severe torque pulsation, that arises from a low firing frequency. By using vector control, it is feasible to vary the generator in-cycle torque to counteract the engine torque oscillation dynamically. This allows for a smoother operation of the APU with the possibility of reducing the size of the engine flywheel. In this paper, a series of motor/generator control torque patterns were applied with the aim of cancelling the engine in-cycle torque pulses.
Technical Paper

Development of a Low Cost Production Automotive Engine for Range Extender Application for Electric Vehicles

2016-04-05
2016-01-1055
Range Extended Electric Vehicles (REEVs) are gaining popularity due to their simplicity, reduced emissions and fuel consumption when compared to parallel or series/parallel hybrid vehicles. The range extender internal combustion engine (ICE) can be optimised to a number of steady state points which offers significant improvement in overall exhaust emissions. One of the key challenges in such vehicles is to reduce the overall powertrain costs, and OEMs providing REEVs such as the BMW i3 have included the range extender as an optional extra due to increasing costs on the overall vehicle price. This paper discusses the development of a low cost Auxiliary Power Unit (APU) of c.25 kW for a range extender application utilising a 624 cc two cylinder automotive gasoline engine. Changes to the base engine are limited to those required for range extender development purposes and include prototype control system, electronic throttle, redesigned manifolds and calibration on European grade fuel.
X