Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

Investigations into Steady-State and Stop-Start Emissions in a Wankel Rotary Engine with a Novel Rotor Cooling Arrangement

2021-09-05
2021-24-0097
The present work investigates a means of controlling engine hydrocarbon startup and shutdown emissions in a Wankel engine which uses a novel rotor cooling method. Mechanically the engine employs a self-pressurizing air-cooled rotor system (SPARCS) configured to provide improved cooling versus a simple air-cooled rotor arrangement. The novelty of the SPARCS system is that it uses the fact that blowby past the sealing grid is inevitable in a Wankel engine as a means of increasing the density of the medium used for cooling the rotor. Unfortunately, the design also means that when the engine is shutdown, due to the overpressure within the engine core and the fact that fuel vapour and lubricating oil are to be found within it, unburned hydrocarbons can leak into the combustion chambers, and thence to the atmosphere via either or both of the intake and exhaust ports.
Technical Paper

A Random Forest Algorithmic Approach to Predicting Particulate Emissions from a Highly Boosted GDI Engine

2021-09-05
2021-24-0076
Particulate emissions from gasoline direct injection (GDI) engines continue to be a topic of substantial research interest. Forthcoming regulation both in the USA and the EU will further reduce their emission and drive innovation. Substantial research effort is spent undertaking experiments to understand, characterize, and research particle number (PN) emissions from engines and vehicles. Recent advances in computing power, data storage, and understanding of artificial intelligence algorithms now mean that these are becoming an important tool in engine research. In this work a random forest (RF) algorithm is used for the prediction of PN emissions from a highly boosted (up to 32 bar BMEP) GDI engine. Particle size, concentration, and the accumulation mode geometric standard deviation (GSD) are all predicted by the model. The results are analysed and an in depth study on parameter importance is carried out.
Journal Article

Analysis of a Diesel Passenger Car Behavior On-Road and over Certification Duty Cycles

2016-10-17
2016-01-2328
Precise, repeatable and representative testing is a key tool for developing and demonstrating automotive fuel and lubricant products. This paper reports on the first findings of a project that aims to determine the requirements for highly repeatable test methods to measure very small differences in fuel economy and powertrain performance. This will be underpinned by identifying and quantifying the variations inherent to this specific test vehicle, both on-road and on Chassis Dynamometer (CD), that create a barrier to improved testing methods. In this initial work, a comparison was made between on-road driving, the New European Drive Cycle (NEDC) and World harmonized Light-duty Test Cycle (WLTC) cycles to understand the behavior of various vehicle systems along with the discrepancies that can arise owing to the particular conditions of the standard test cycles.
Technical Paper

The Effects of Engine Thermal Conditions on Performance, Emissions and Fuel Consumption

2010-04-12
2010-01-0802
Engine thermal management systems (TMS) are gaining importance in engine development and calibration to achieve low fuel consumption and meet future emissions standards. To benefit from their full potential, a thorough understanding of the effects on engine behavior is necessary. Steady state tests were performed on a 2.0L direct injection diesel engine at different load points. A design of experiments (DoE) approach was used to conduct exhaust gas recirculation (EGR) and injection timing swings at different coolant temperatures. The effect of the standard engine controller and calibration was observed during these tests. The injection timing strategy included a significant dependency on coolant temperature, retarding injection by about 3° crank angle between coolant temperatures of 70°C and 86°C. In contrast, EGR strategy was essentially independent of coolant temperature, though physical interactions were present due in part to the EGR cooler.
Technical Paper

The Effect of Forced Cool Down on Cold Start Test Repeatability

2009-06-15
2009-01-1976
Increasing the number of cold-start engine cycles which could be run in any one day would greatly improve the productivity of an engine test facility. However with the introduction of forced cooling procedures there is the inherent risk that test-to-test repeatability will be affected. Therefore an investigation into the effects caused by forced cooling on fuel consumption and the temperature distribution through the engine and fluids is essential. Testing was completed on a 2.4 litre diesel engine running a cold NEDC. The test facility utilises a basic ventilation system, which draws in external ambient air, which is forced past the engine and then drawn out of the cell. This can be supplemented with the use of a spot cooling fan. The forced cool down resulted in a much quicker cool down which was further reduced with spot cooling, in the region of 25% reduction.
Technical Paper

Potential of a Controllable Engine Cooling System to Reduce NOx Emissions in Diesel Engines

2004-03-08
2004-01-0054
This paper investigates the potential for reduced NOx emissions from the integration of thermal factors into the Diesel engine calibration process. NOx emissions from Diesel engines have been shown to be sensitive to engine operating temperature, which is directly related to the level of cooling applied to the engine, in addition to the main engine operating parameters such as injection timing and EGR ratio. Experimental engine characterization of the main engine parameters against coolant temperature set point shows that engine cooling settings can extend the feasible lower limits of fuel consumption and emissions output from Diesel engine. With the adoption of an integrated calibration methodology including engine cooling set point, NOx emissions can be improved by up to 30% at crucial high speed/load operating points seen in the NEDC drive cycle with a minor reduction in fuel economy and small increase in CO output.
Technical Paper

Cold Start Emissions Optimisation Using an Expert Knowledge Based Calibration Methodology

2004-03-08
2004-01-0139
As emissions regulations become more stringent, an efficient and effective method of rig-based transient engine calibration becomes increasingly desirable. It is known that approximately 80% of total drive-cycle exhaust emissions can be produced in the initial warm-up phase before catalyst ‘light-off’ is achieved and catalyst conversion efficiency increases. During this period, there is a clear trade-off that can be made in the strategy between the amount of thermal energy that is delivered to the catalyst and the amount of exhaust emissions produced during the time before catalyst ‘light-off’ is achieved. This paper examines whether an automated expert-knowledge based decision-making methodology can be used to find a satisfactory trade-off between these two parameters whilst reducing the iteration time and level of input required from a calibration engineer.
Technical Paper

Integrated Cooling Systems for Passenger Vehicles

2001-03-05
2001-01-1248
Electric coolant pumps for IC engines are under development by a number of suppliers. They offer packaging and flexibility benefits to vehicle manufacturers. Their full potential will not be realised, however, unless an integrated approach is taken to the entire cooling system. The paper describes such a system comprising an advanced electric pump with the necessary flow controls and a supervisory strategy running on an automotive microprocessor. The hardware and control strategy are described together with the simulation developed to allow its calibration and validation before fitting in a B/C class European passenger car. Simulation results are presented which show the system to be controllable and responsive to deliver optimum fuel consumption, emissions and driver comfort.
Technical Paper

Development of a Low Cost Production Automotive Engine for Range Extender Application for Electric Vehicles

2016-04-05
2016-01-1055
Range Extended Electric Vehicles (REEVs) are gaining popularity due to their simplicity, reduced emissions and fuel consumption when compared to parallel or series/parallel hybrid vehicles. The range extender internal combustion engine (ICE) can be optimised to a number of steady state points which offers significant improvement in overall exhaust emissions. One of the key challenges in such vehicles is to reduce the overall powertrain costs, and OEMs providing REEVs such as the BMW i3 have included the range extender as an optional extra due to increasing costs on the overall vehicle price. This paper discusses the development of a low cost Auxiliary Power Unit (APU) of c.25 kW for a range extender application utilising a 624 cc two cylinder automotive gasoline engine. Changes to the base engine are limited to those required for range extender development purposes and include prototype control system, electronic throttle, redesigned manifolds and calibration on European grade fuel.
Technical Paper

Freevalve: Control and Optimization of Fully Variable Valvetrain-Enabled Combustion Strategies for High Performance Engines

2022-08-30
2022-01-1066
With ever stricter legislative requirements for CO2 and other exhaust emissions, significant efforts by OEMs have launched a number of different technological strategies to meet these challenges such as Battery Electric Vehicles (BEVs). However, a multiple technology approach is needed to deliver a broad portfolio of products as battery costs and supply constraints are considerable concerns hindering mass uptake of BEVs. Therefore, further investment in Internal Combustion (IC) engine technologies to meet these targets are being considered, such as lean burn gasoline technologies alongside other high efficiency concepts such as dedicated hybrid engines. Hence, it becomes of sound reason to further embrace diversity and develop complementary technologies to assist in the transition to the next generation hybrid powertrain. One such approach is to provide increased valvetrain flexibility to afford new degrees of freedom in engine operating strategies.
Technical Paper

Factors Affecting Test Precision in Latest Vehicle Technologies

2018-04-03
2018-01-0640
Demonstrating the cost/benefits of technologies in the automotive sector is becoming very challenging because the benefits from technologies are sometimes of similar magnitude to testing precision. This paper aims to understand vehicle-borne imprecision and the effect of this on the quality of chassis dynamometer (CD) testing. Fuel consumption and NOx emissions precision is analyzed for two diesel vehicles with particulate filter and SCR systems. The two vehicles were tested on a high precision CD facility over the NEDC (New European Drive Cycle) and WLTC (World harmonized Light-duty Test Cycle) cycles. The CD base precision of testing was characterized between 0.6-3% depending on the cycle phase. A novel application of multi-variate statistical analysis was used to identify the factors that affected testing precision, allowing isolation of small differences that were not obvious when conducting cycle-averaged or cycle-phase-averaged analysis.
Technical Paper

Design of a Feedback Controlled Thermostat for a Vehicle Cooling System

1996-08-01
961823
In traditional liquid cooled internal combustion engine systems, the coolant temperature is controlled by a thermostat which governs the coolant flow rate to the radiator. The thermostat is effectively a directional control valve in which the spool displacement is used to direct flow to the radiator. The coolant temperature is primarily a function of four parameters, namely radiator and thermostat characteristics, coolant flow rate and ambient temperature. By employing closed-loop feedback, the coolant temperature can be controlled according to environmental conditions. To achieve this goal the overall system must be correctly designed. That is the issue discussed in this paper. The increasing use of simulation for both circuit and component analysis in the automtive industry has come about due to the requirement for acceptable transient as well as steady state system performance.
Technical Paper

Optimising Cooling System Performance Using Computer Simulation

1997-05-19
971802
This paper presents a lumped parameter method for whole circuit simulation of vehicle cooling systems using the Bathfp simulation environment. The dynamic performance of a 1.8 litre internal combustion engine cooling system is examined. The simulation is compared with experimental data from a test rig incorporating a non-running engine with external heat source and a good correspondence is achieved. The background to the modelling approach is described. It is shown that simulating cooling systems with Bathfp offers the designer the flexibility to assess component sensitivity and changes in system configuration which will aid the process of cooling system optimisation.
Technical Paper

Energy Consumption of Electro-Hydraulic Steering Systems

2005-04-11
2005-01-1262
The reduction of fuel consumption in vehicles remains an important target in vehicle development to meet the carbon dioxide emission reduction target. One of the significant consumers of energy in a vehicle is the hydraulic power-assisted steering system (HPS) powered by the engine belt drive. To reduce the energy consumption an electric motor can be used to drive the pump (electro-hydraulic power steering or EHPS). In this work a simulation model was developed and validated to model the energy consumption of the whole steering system. This includes an advanced friction model for the steering rack, a physically modeled steering valve, the hydraulic pump and the electric motor with the control unit. The model is used to investigate the influence of various parameters on the energy consumption for different road situations. The results identified the important parameters influencing the power consumption and showed the potential to reduce the power consumption of the system.
Technical Paper

Reduction of Steady State NOx Levels from an Automotive Diesel Engine Using Optimised VGT/EGR Schedules

1999-03-01
1999-01-0835
Currently, 80% of European diesel passenger cars are turbocharged and as emission standards become more stringent exhaust gas recirculation (EGR) will be the primary means of suppressing oxides of nitrogen (NOx). The lighter the load the greater will be the combustion tolerance to increased EGR flow rates and hence increased NOx suppression. Automotive diesel engines using wastegated turbochargers cannot recirculate above 50% EGR without some sort of “added” device or system, which is able to displace the inlet fresh air charge. This has been demonstrated by throttling the diesel intake to reduce the fresh air inlet manifold pressure so allowing more EGR flow by virtue of a higher exhaust-side pressure due the effects of the turbocharger. The method reported here investigates a different approach to increasing the EGR rates by replacing a fixed geometry turbocharger (FGT) with a variable geometry turbocharger, (VGT).
Technical Paper

Sub-23 nm Particulate Emissions from a Highly Boosted GDI Engine

2019-09-09
2019-24-0153
The European Particle Measurement Program (PMP) defines the current standard for measurement of Particle Number (PN) emissions from vehicles in Europe. This specifies a 50% count efficiency (D50) at 23 nm and a 90% count efficiency (D90) at 41 nm. Particulate emissions from Gasoline Direct Injection (GDI) engines have been widely studied, but usually only in the context of PMP or similar sampling procedures. There is increasing interest in the smallest particles - i.e. smaller than 23 nm - which can be emitted from vehicles. The literature suggest that by moving D50 to 10 nm, PN emissions from GDI engines might increase by between 35 and 50% but there remains a lot of uncertainty.
Journal Article

Initial Investigations into the Benefits and Challenges of Eliminating Port Overlap in Wankel Rotary Engines

2020-04-14
2020-01-0280
The Wankel rotary engine historically found limited success in automotive applications due in part to poor combustion efficiency and challenges around emissions. This is despite its significant advantages in terms of power density, compactness, vibrationless operation, and reduced parts count in relation to the 4-stroke reciprocating engine, which is now-dominant in the automotive market. A large part of the reason for the poor fuel economy and high hydrocarbon emissions of the Wankel engine is that there is a very significant amount of overlap when the ports are opened and/or closed by the rotor apices (so-called peripheral ports). This paper investigates the benefits of zero overlap from a production engine with this characteristic and the effect of configuring a peripherally-ported Wankel engine in such a manner.
Journal Article

Further Investigations into the Benefits and Challenges of Eliminating Port Overlap in Wankel Rotary Engines

2021-04-06
2021-01-0638
In a previous study it was shown that a production vehicle employing a Wankel rotary engine, the Mazda RX-8, was easily capable of meeting much more modern hydrocarbon emissions than it had been certified for. It was contended that this was mainly due to its provision of zero port overlap through its adoption of side intake and exhaust ports. In that earlier work a preliminary investigation was conducted to gauge the impact of adopting a zero overlap approach in a peripherally-ported Wankel engine, with a significant reduction in performance and fuel economy being found. The present work builds on those initial studies by taking the engine from the vehicle and testing it on an engine dynamometer. The results show that the best fuel consumption of the engine is entirely in line with that of several proposed dedicated range extender engines, supporting the contention that the Wankel engine is an excellent candidate for that role.
Technical Paper

Experimental Investigation of Ion Formation for Auto-Ignition Combustion in a High-Temperature and High-Pressure Combustion Vessel

2023-08-28
2023-24-0029
One of the main challenges in internal combustion engine design is the simultaneous reduction of all engine pollutants like carbon monoxide (CO), total unburned hydrocarbons (THC), nitrogen oxides (NOx), and soot. Low-temperature combustion (LTC) concepts for compression ignition (CI) engines, e.g., premixed charged compression ignition (PCCI), make use of pre-injections to create a partially homogenous mixture and achieve an emission reduction. However, they present challenges in the combustion control, with the usage of in-cylinder pressure sensors as feedback signal is insufficient to control heat release and pollutant emissions simultaneously. Thus, an additional sensor, such as an ion-current sensor, could provide further information on the combustion process and effectively enable clean and efficient PCCI operation.
Technical Paper

Study on the Effects of EGR Supply Configuration on Cylinder-to-Cylinder Dispersion and Engine Performance Using 1D-3D Co-Simulation

2015-11-17
2015-32-0816
Exhaust Gas Recirculation (EGR) is widely used in IC combustion engines for diluting air intake charge and controlling NOx emission. The rate of EGR required by an engine varies by the speed and load and control of the right amount entering the cylinders is crucial to ensure good engine performance and low NOx emission. However, controlling the amount of EGR entering the intake manifold does not ensure that EGR rate will be evenly distributed among the engine's cylinders. This can many times lead to cylinders operating at very high or low EGR rates which contradictory can deteriorate particulate matter and NOx emission. The present study analyses the cylinder-to-cylinder EGR dispersion of a 4 cylinder 2.2L EUROV Diesel engine and its effects on the combustion stability. A 1D-3D coupling simulation is performed using GT-Power and STAR-CCM+ to analyze the effects of intake manifold geometry and EGR supply configuration on the EGR homogeneity and cylinder-to-cylinder distribution.
X