Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A Distributed Simulation of a Martian Fuel Production Facility

The future of human exploration in the solar system is contingent on the ability to exploit resources in-situ to produce mission consumables. Specifically, it has become clear that the success of a manned mission to Mars will likely depend on fuel components created on the Martian surface. While several architectures for an unmanned fuel production surface facility on Mars exist in theory, a simulation of the performance and operation of these architectures has not been created. In this paper, the framework describing a simulation of one such architecture is defined. Within this architecture, each component of the base is implemented as a state machine, with the ability to communicate with other base elements as well as a supervisor. An environment supervisor is also created which governs low level aspects of the simulation such as movement and resource distribution, in addition to higher-level aspects such as location selection with respect to operations specific behavior.
Journal Article

Utilizing Team Productivity Models in the Selection of Space Exploration Teams

The term “productivity” all too often has becomes a buzz-word, ultimately diminishing its perceived importance. However, productivity is the major concern of any team, and therefore must be defined to gain an appropriate understanding of how a system is actually working. Here, productivity means the level of contribution to the throughput of a system such as defined in the Theory of Constraints. In the field of space exploration, the throughput is the number of milestones of the mission accomplished as well as the potential survival during extreme events (due to failures or other unplanned events). For a time tasks were accomplished by expert individuals (e.g., an astronaut), but recently team structures have become the norm. It is clear that with increased mission complexity, “no single entity can have complete knowledge of or the abilities to handle all matters” [10].
Journal Article

The Semantic Web and Space Operations

In this paper, we introduce the use of ontologies to implement the information developed and organized by resource planning tools into standard project management documents covering integrated cost, resource modeling and analysis, and visualization. The basic upper ontology used for NASA Space Operations is explained and the results obtained are discussed. This ontology-centered approach is looking for tighter connections between software, hardware, and systems engineering.
Technical Paper

Simulation and Systems Engineering: Lessons Learned

Aerospace projects live a long time. Around the turn of the century, NASA first began to discuss multi-decadal projects with respect to the tools, methods, infrastructure and culture necessary to successfully establish outposts and bases both on the Moon as well as in adjacent space. Pilot projects were completed, capabilities developed and solutions were shared across the Agency. A decade later the Mars discussion was multi-generational with planning milestones 50 years in the future. The 1970’s Requirements Document, or the 1990’s System Model are nowhere near suitable for planning, development, integration and operations of multi-national, highly complex, incredibly expensive development efforts planned to outlast not only the careers of the developers but that of their children as well. Simulation in the different forms has become very important for this multi-decadal projects. The challenge will be to device ways to create formats and views which can stand time.