Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Enabling Much Higher Power Densities in Aerospace Power Electronics with High Temperature Evaporative Spray Cooling

2008-11-11
2008-01-2919
A power electronics module was equipped with an evaporative spray cooling nozzle assembly that served to remove waste heat from the silicon devices. The spray cooling nozzle assembly took the place of the standard heat sink, which uses single phase convection. The purpose of this work was to test the ability of spray cooling to enable higher power density in power electronics with high temperature coolant, and to be an effective and lightweight system level solution to the thermal management needs of aerospace vehicles. The spray cooling work done here was with 95 °C water, and this data is compared to 100 °C water/ propylene glycol spray cooling data from a previous paper so as to compare the spray cooling performance of a single component liquid to that of a binary liquid such as WPG. The module used during this work was a COTS module manufactured by Semikron, Inc., with a maximum DC power input of 180 kW (450 VDC and 400 A).
Technical Paper

Thermal Design in Diode Array Packaging

2002-10-29
2002-01-3261
Effective thermal management and removal of the waste heat generated at diode arrays is critical to the development of high-power solid-state lasers. Thermal design must be considered in the packaging of these arrays. Two different packages with heat dissipation through spray cooling are evaluated experimentally and numerically. Their overall performance is compared with other packaging configurations using different heat removal approaches. A novel packaging design is proposed that can fulfill the requirements of low thermal resistance, temperature uniformity among emitters in the diode array, low coolant flow rate, simplicity and low assembly cost. The effect of temperature uniformity on the pumping efficiency for gain media is examined for our novel packaging design. The thermal stress induced by temperature variation within an emitter is also considered.
Technical Paper

Electromechanical Actuator Cooling Fan Blades Design and Optimization

2016-09-20
2016-01-1994
For aircraft electromechanical actuator (EMA) cooling applications using forced air produced by axial fans, the main objective in fan design is to generate high static pressure head, high volumetric flow rate, and high efficiency over a wide operating range of rotational speed (1x∼3x) and ambient pressure (0.2∼1 atm). In this paper, a fan design based on a fan diameter of 86 mm, fan depth (thickness) of 25.4 mm, and hub diameter of 48 mm is presented. The blade setting angle and the chord lengths at the leading and trailing edges are varied in their suitable ranges to determine the optimal blade profiles. The fan static pressure head, volumetric flow rate, and flow velocity are calculated at various ambient pressures and rotational speeds. The optimal blade design in terms of maximum total-to-total pressure ratio and efficiency at the design point is obtained via CFD simulation. A 5-blade configuration yields the best performance in terms of efficiency and total pressure ratio.
Technical Paper

Electromechanical Actuator Cooling Fan Reliability Analysis and Safety Improvement

2016-09-20
2016-01-1997
The aircraft electromechanical actuator (EMA) cooling fan is a critical component because an EMA failure caused by overheating could lead to a catastrophic failure in aircraft. Fault tree analysis (FTA) is used to access the failure probability of EMA fans with the goal of improving their mean time to failure (MTTF) from ∼O(5×104) to ∼ O(2.5×109) hours without incurring heavy weight penalty and high cost. The dual-winding and dual-bearing approaches are analyzed and a contra rotating dual-fan design is proposed. Fan motors are assumed to be brushless direct current (BLDC) motors. To have a full understanding of fan reliability, all possible failure mechanisms and failure modes are taken into account. After summarizing the possible failure causes and failure modes of BLDC fans by focusing on each failure mechanism, the life expectancy of fan ball bearings based on a major failure mechanism of lubricant deterioration is calculated and compared to that provided in the literature.
Technical Paper

Study on Metal Sheet Ductile Fracture using Square Punch Test

2018-04-03
2018-01-0808
This study introduces a new practical calibration approach of ductile fracture models by performing square punch tests on metal sheets. During square punch tests, ductile fracture occurs at either the corner of die or punch radius when applying different clamping loads and lubrication conditions. At the corner of die radius, in-plane pure shear is induced at the intersection between the side-walls and the flange by combined tension and compression. On the other hand, the material at the corner of the punch radius is under combined bending and biaxial tension. The material studied in this paper is advanced high strength steel (AHSS) DP780 from ArcelorMittal. Isotropic J2 plasticity model with mixed Swift-Voce hardening rule is calibrated from uniaxial tensile tests.
Technical Paper

Fan Performance Characteristics at Various Rotational Speeds and Ambient Pressures

2014-09-16
2014-01-2219
The scaling laws of fans express basic relationships among the variables of fan static pressure head, volume flow rate, air density, rotational speed, fan diameter, and power. These relationships make it possible to compare the performance of geometrically similar fans in dissimilar conditions. The fan laws were derived from dimensionless analysis of the equations for volumetric flow rate, static pressure head, and power as a function of fan diameter, air density and rotational speed. The purpose of this study is to characterize a fan's performance characteristics at various rotational speeds and ambient pressures. The experimental results are compared to the fan scaling laws.
Journal Article

Characterization and Modeling of Anisotropic Fracture of Advanced High-Strength Steel Sheets

2023-04-11
2023-01-0613
As an engineering approach of balanced complexity and accuracy, the Generalized Incremental Stress-State dependent damage Model (GISSMO) in LS-DYNA® has now been widely adopted by the automotive industry to predict metallic materials’ fracture occurrences in both forming and crashworthiness simulations. Calibration of the nominal GISSMO is typically based on material characterization data along a certain representative material orientation. Nevertheless, many rolled or extruded metallic materials, such as advanced high-strength steel (AHSS) sheets, exhibit accentuated anisotropic fracture behavior, even though, notably, some of these materials show comparatively weak anisotropic plasticity in the meantime. Accordingly, in this work, the deformation and fracture behavior of a selected AHSS grade, Q&P980 steel, was first characterized based on a series of mechanical experiments under simple shear, uniaxial tension, plane strain, and equi-biaxial tension conditions.
Journal Article

A Comprehensive Plasticity and Fracture Model for Metal Sheets under Multi-axial Stress and Non-Linear Strain Path

2017-03-28
2017-01-0315
A comprehensive plasticity and fracture model was built for metal sheets with application to metal sheet forming and vehicle crash simulations. The combined Bai-Wierzbicki (BW [1]) and CPB06ex2 [2] (or Yld2000-2D [3]) anisotropic plasticity model was further extended to consider elevated temperature effects in additional to the effect of multiaxial stress states. A fully modularized framework was established to combine isotropic, kinematic, and cross hardening behaviors under non-linear loading conditions. The all strain based modified Mohr-Coulomb (eMMC) fracture model was used to consider material anisotropy and nonlinear strain path. The model has been implemented into Abaqus/Explicit as a user material subroutine (VUMAT). Test results on advanced high strength steels, aluminum alloy sheets and magnesium alloy sheets are used to validate the modeling and testing methodologies. Very good correlation was observed between experimental and simulation results.
Journal Article

A New Combined Isotropic, Kinematic and Cross Hardening Model for Advanced High Strength Steel under Non-Linear Strain Loading Path

2017-03-28
2017-01-0367
A fully modularized framework was established to combine isotropic, kinematic, and cross hardening behaviors under non-monotonic loading conditions for advanced high strength steels. Experiments under the following types of non-proportional loading conditions were conducted, 1) uniaxial tension-compression-tension/compression-tension-compression full cycle reversal loading, 2) uniaxial reversal loading with multiple cycles, and 3) reversal shear. The calibrated new model is decoupled between isotropic and kinematic hardening behaviors, and independent on both anisotropic yield criterion and fracture model. Nine materials were calibrated using the model, include: DP590, DP600, DP780, TRIP780, DP980LY, QP980, AK Steel DP980, TBF1180, and AK Steel DP1180. Good correlation was observed between experimental and modeled results.
X