Refine Your Search


Search Results

Technical Paper

Time Scale Re-Sampling to Improve Transient Event Averaging

As the drive to make automobiles more noise and vibration free continues, it has become necessary to analyze transient events as well as periodic and random phenomena. Averaging of transient events requires a repeatable event as well as an available trigger event. Knowing the exact event time, the data can be post-processed by re-sampling the time scale to capture the recorded event at the proper instant in time to allow averaging. Accurately obtaining the event time is difficult given the sampling restrictions of current data acquisition hardware. This paper discusses the ideal hardware needed to perform this type of analysis, and provides analytical examples showing the transient averaging improvements using time scale re-sampling. These improvements are applied to noise source identification of a single transient event using an arrayed microphone technique. With this technique, the averaging is performed using time delays between potential sources and microphones in the array.
Technical Paper

Atomization of a Liquid Jet Under Swirling Air Stream

The instability of a viscous liquid jet surrounded by a swirling air stream subject to a 3-D disturbance is predicted by a linear stability model. The effect of flow conditions, fluid properties and nozzle geometry on the disintegration of the liquid jet are investigated by conducting a parametric study. It is observed that the relative velocity between the liquid and gas phases promotes the interfacial aerodynamic instability. The predicted range of wave numbers in which asymmetric modes have higher growth rates than the axisymmetric mode and dominate the instability agrees very well with experimental data. The density ratio significantly enhances the instability as does the axial Weber number. Liquid viscosity inhibits the disintegration process and damps higher helical modes more significantly than the axisymmetric mode. It is observed that air swirl has a stabilizing effect on the liquid jet.
Technical Paper

Silicon Microsensors for Aerospace Condition Monitoring

This paper provides several examples of silicon “micromachined” semiconductor sensors with which the authors are involved for aerospace condition monitoring. This and related work in MEMS (Micro Electro Mechanical Systems) has the potential to revolutionize condition monitoring in aerospace condition and “health monitoring” by (1) moving “smart” electronics out to the sensor chip itself and (2) combining a vast quantity and types of, not only electronic, but micromechanical sensing schemes into the silicon chip . Precisely formed cantilevers, gears, valves, microplumbing and even micro motors of the cross-section of a human hair can be fabricated on a single silicon microchip. Silicon is an excellent mechanical material with a yield strength several times that of stainless steel. Also silicon has excellent thermal properties , whereas compatible silicon dioxide (which we typically use in connection with silicon microelectronics patterning) is virtually a thermal insulator.
Technical Paper

Effect of Shaft-bearing Configurations on Spiral Bevel Gear Mesh and Dynamics

Spiral bevel gear dynamics are significantly affected by the flexibilities of shafts and bearings. In this study, a new shaft-bearing model has been proposed for computing the effective support stiffness. The results are applied to the lumped parameter dynamic model of spiral bevel geared rotor system with 3-bearing straddle-mounted pinion configuration. Also, using the multi-degree of freedom lumped parameter dynamic model and quasi-static three-dimensional finite element tooth contact analysis program, the responses of two typical shaft-bearing configurations used in automotive applications, that are the 3-bearing straddle mounted pinion configuration and the 2-bearing overhung mounted pinion configuration, are compared. The comparative analysis along with a set of parametric studies highlights their different contributions to the spiral bevel gear mesh characteristics and dynamic response.
Technical Paper

Dynamic Features and their Propagation in a Centrifugal Compressor Housing with Ported Shroud

The goal of the presented research is to study the effective operational range for a centrifugal vaneless diffuser turbocharger compressor with ported shroud typically used in diesel engines. A turbocharger bench facility was designed and tested in order to define the performances of the compressor and to better understand the occurrence of instabilities in the housing. Specific emphasis was given to the low mass flow rate region of the compressor performance characteristics where instabilities occur with fluctuations that can be significantly large in the case of surge. Static pressures and dynamic pressure fluctuations were measured at the inlet, the outlet, as well as at different positions around the volute and diffuser sections of the compressor in order to assess the development and propagation of flow instabilities. The dynamic signature of the flow was measured along with the elaboration of the compressor mapping.
Technical Paper

Numerical Flow Analysis of a Centrifugal Compressor with Ported and without Ported Shroud

Turbochargers are commonly used in automotive engines to increase the internal combustion engine performance during off design operation conditions. When used, a most wide operation range for the turbocharger is desired, which is limited on the compressor side by the choke condition and the surge phenomenon. The ported shroud technology is used to extend the operable working range of the compressor, which permits flow disturbances that block the blade passage to escape and stream back through the shroud cavity to the compressor inlet. The impact of this technology on a speed-line at near optimal operation condition and near surge operation condition is investigated. A numerical study investigating the flow-field in a centrifugal compressor of an automotive turbocharger has been performed using Large Eddy Simulation. The wheel rotation is handled by the numerically expensive sliding mesh technique. In this analysis, the full compressor geometry (360 deg) is considered.
Technical Paper

Geometry Design of a Non-Pin Cycloid Drive for In-Wheel Motor

Cycloid drives are widely used in the in-wheel motor for electric vehicles due to the advantages of large ratio, compact size and light weight. To improve the transmission efficiency and the load capability and reduce the manufacturing cost, a novel cycloid drive with non-pin design for the application in the in-wheel motor is proposed. Firstly, the generation of the gear pair is presented based on the gearing of theory. Secondly, the meshing characteristics, such as the contact zones, curvature difference, contact ratio and sliding coefficients are derived for performance evaluation. Then, the loaded tooth contact analysis (LTCA) is performed by establishing a mathematical model based on the Hertz contact theory to calculate the contact stress and deformation.
Technical Paper

Tuning Axle Whine Characteristics with Emphasis on Gear Dynamics and Psychoacoustics

A combined lumped parameter, finite element (FE) and boundary element (BE) model is developed to predict the whine noise from rear axle. The hypoid geared rotor system, including the gear pair, shafts, bearings, engine and load, is represented by a lumped parameter model, in which the dynamic coupling between the engaging gear pair is represented by a gear mesh model condensed from the loaded tooth contact analysis results. The lumped parameter model gives the dynamic bearing forces, and the noise radiated by the gearbox housing vibration due to the dynamic bearing force excitations is calculated using a coupled FE-BE approach. Based on the predicted noise, a new procedure is proposed to tune basic rear axle design parameters for better sound quality purpose. To illustrate the salient features of the proposed method, the whine noise from an example rear axle is predicted and tuned.
Technical Paper

Coupled Multi-Body Dynamic and Vibration Analysis of High-Speed Hypoid Geared Rotor System

High speed, precision geared rotor systems are often plagued by excessive vibration and noise problems. The response that is primarily excited by gear transmission error is actually coupled to the large displacement rotational motion of the driveline system. Classical pure vibration model assumes that the system oscillates about its mean position without coupling to the large displacement motion. To improve on this approach and understanding of the influences of the dynamic coupling, a coupled multi-body dynamic and vibration simulation model is proposed. Even though the focus is on hypoid geared rotor system, the model is more general since hypoid and bevel gears have more complicated geometry and time and spatial-varying characteristics compared to parallel axis gears.
Technical Paper

Active Vibration Control to Suppress Gear Mesh Response

This paper discusses an enhanced active vibration control concept to suppress the dynamic response associated with gear mesh frequencies. In active control application, the control of dynamic gear mesh tonal response is essentially the rejection or suppression of periodical disturbance. Our active control experimental work shows that the existence of un-controlled harmonic result in the increase at these harmonics when applying direct control to the target mesh frequencies. To address this problem, the effect of the existence of un-correlated harmonic components in error signal when applying active control to suppress the target gear mesh harmonics is examined. The proposed adaptive controller that is designed specifically for tackling gear mesh frequency vibrations is based on an enhanced filtered-x least mean square algorithm (FXLMS) with frequency estimation to synthesize the required reference signal.
Technical Paper

Time-Varying Non-Linear Dynamics of a Hypoid Gear Pair for Rear Axle Applications

A general time-varying nonlinear dynamic model of a hypoid gear pair for rear axle applications is proposed. The dynamic model considers time-varying mesh position, line of action, mesh stiffness, mesh damping and backlash nonlinearity. Based on the model, dynamic analysis is conducted to study the effect of mean load, mesh damping and mesh parameter variations on dynamic mesh force response and the interaction between them and backlash nonlinearity. Numerous nonlinear phenomena such as tooth impacts and jump discontinuities are revealed by computational results.
Technical Paper

Predictive Monitoring and Failure Prevention of Vehicle Electronic Components and Sensor Systems

Vehicle electronics and sensor systems have become indispensable parts in providing safety, comfort, personal communication mobility and many other advanced functions in today's vehicles. As a result, reliability requirements for these critical parts have become extremely important. To meet these requirements, more advanced technologies and tools for degradation monitoring and failure prevention are needed. Currently, the development of diagnostics and prognostics techniques, which employ accurate degradation quantification by appropriate sensor selection, location decision, and feature selection and feature fusion, still remains a vital and unsolved issue. This paper addresses several realistic concerns of failure prevention in vehicle electronics and sensor systems. A unified monitoring and prognostics approach that prevents failures by analyzing degradation features, driven by physics-of-failure, is suggested as a general framework to overcome the unsolved challenge.
Technical Paper

Driveline NVH Modeling Applying a Multi-subsystem Spectral-based Substructuring Approach

A new multi-level substructuring approach is proposed to predict the NVH response of driveline systems for the purpose of analyzing rear axle gear whine concern. The fundamental approach is rooted in the spectral-based compliance coupling theory for combining the dynamics of two adjacent subsystems. This proposed scheme employs test-based frequency response functions of individual subsystems, including gear pairs, propshaft, control arms and axle tube, in free-free state as sequential building blocks to synthesize the complete system NVH response. Using an existing driveline design, the salient features of this substructuring approach is demonstrated. Specifically, the synthesized results for the pinion-propshaft assembly and complete vehicle system are presented. The predictions are seen to be in excellent agreement with the experimental data from direct vehicle measurements.
Journal Article

Multi-Point Mesh Modeling and Nonlinear Multi-Body Dynamics of Hypoid Geared System

A multi-point hypoid gear mesh model based on 3-dimensional loaded tooth contact analysis is incorporated into a coupled multi-body dynamic and vibration hypoid gear model to predict more detailed dynamic behavior of each tooth pair. To validate the accuracy of the proposed model, the time-averaged mesh parameters are applied to linear time-invariant (LTI) analysis and the dynamic responses, such as dynamic mesh force, dynamic transmission error, are computed, which demonstrates good agreement with that predicted by single-point mesh model. Furthermore, a nonlinear time-varying (NLTV) dynamic analysis is performed considering the effect of backlash nonlinearity and time-varying mesh parameters, such as mesh stiffness, transmission error, mesh point and line-of-action. Simulation results show that the time history of the mesh parameters and dynamic mesh force for each pair of teeth within a full engagement cycle can be simulated.
Journal Article

Nonlinear Time-Varying Dynamic Interactions of Hypoid Gear-Shaft-Bearing Systems

Nonlinear interaction between time-varying hypoid gear mesh and bearing support is investigated in this study. Mesh parameters are time-varying due to complex tooth profile of hypoid gear. Bearing stiffness is formulated based on real geometry and instantaneous orbital position of rolling elements. Linear model is firstly analyzed to study the modal frequency and mode shape variations under different stiffness ratio between gear mesh and bearing support. Then, nonlinear analysis is conducted to compare the differences between linear and nonlinear dynamic response based on specific nonlinear conditions of geared rotor system. It is found that the coupling between hypoid gear mesh and bearing support can be either strong or weak depending on the ratio between mesh stiffness along line-of-action (LOA) and bearing stiffness in radial direction. Parametric studies indicate that dynamic mesh force is sensitive to bearing clearance for certain stiffness ratio.
Journal Article

Effect of Friction Torque on Electromechanical Brake System Dynamics

Actuator and roller screw mechanism are key components of electromechanical brake (EMB) system in automotive and aerospace industry. The inverted planetary roller screw mechanism (IPRSM) is particularly competitive due to its high load-carrying capacity and small assembly size. For such systems, friction characteristic and friction torque generated from rolling/sliding contacts can be an important factor that affects the dynamic performance as well as vibration behavior. This paper investigates the modeling and simulation of the EMB system in early design stage with special attention to friction torque modelling of IPRSM. Firstly, a step-by-step system model development is established, which includes the controller, servo motor, planetary gear train and roller screw mechanism to describe the dynamic behavior of the EMB system.
Journal Article

Effect of Component Flexibility on Axle System Dynamics

The prediction and control of gear vibration and noise has become very important in the design of a quiet, high-quality gearbox systems. The vibratory energy of the gear pair caused by transmission error excitation is transmitted structurally through shaft-bearing-housing assembly and radiates off from exterior housing surface. Most of the previous studies ignore the contribution of components flexibility to the transmission error (TE) and system dynamic responses. In this study, a system level model of axle system with hypoid gear pair is developed, aiming at investigating the effect of the elasticity of the shafts, bearings and housing on TE as well as the contribution of flexible bearings on the dynamic responses. The load distribution results and gear transmission errors are calculated and compared between different assumptions on the boundary conditions.
Journal Article

Interaction of Gear-Shaft Dynamics Considering Gyroscopic Effect of Compliant Driveline System

Due to the design of lightweight, high speed driveline system, the coupled bending and torsional vibration and rotordynamics must be considered to predict vibratory responses more realistically. In the current analysis, a lumped parameter model of the propeller shaft is developed with Timoshenko beam elements, which includes the effect of rotary inertia and shear deformation. The propeller shaft model is then coupled with a hypoid gear pair representation using the component mode synthesis approach. In the proposed formulation, the gyroscopic effect of both the gear and propeller shaft is considered. The simulation results show that the interaction between gear gyroscopic effect and propeller shaft bending flexibility has considerable influence on the gear dynamic mesh responses around bending resonances, whereas the torsional modes still dominate in the overall frequency spectrum.
Journal Article

Elastohydrodynamic Lubrication Damping of Spiral Bevel Gears at Moderate Loads

Modeling of elastohydrodynamic lubrication phenomena for the spiral bevel gears is performed in the present study. The damping and the friction coefficient generated from the lubricated contact area will have profound effects on the dynamics of spiral bevel gears. Thus the damping value generated from this friction model will be time varying. This makes the use of constant and empirical damping value in the dynamics of spiral bevel gears questionable. The input geometric and kinematic data required for the elastohydrodynamic lubrication (EHL) simulations are obtained using Tooth Contact Analysis. A full numerical elastohydrodynamic lubrication simulations are carried out using asymmetric integrated control volume (AICV) algorithm to compute the contact pressures. The fast Fourier transform is used to calculate the elastic deformations on the gear surfaces due to contact load.
Journal Article

Optimal Pressure Based Detection of Compressor Instabilities Using the Hurst Exponent

The compressor surge line of automotive turbochargers can limit the low-end torque of an engine. In order to determine how close the compressor operates to its surge limit, the Hurst exponent of the pressure signal has recently been proposed as a criterion. The Hurst exponent quantifies the fractal properties of a time series and its long-term memory. This paper evaluates the outcome of applying Hurst exponent based criterion on time-resolved pressure signals, measured simultaneously at different locations in the compression system. Experiments were performed using a truck-sized turbocharger on a cold gas stand at the University of Cincinnati. The pressure sensors were flush-mounted at different circumferential positions at the inlet of the compressor, in the diffuser and volute, as well as downstream of the compressor.