Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Counter-Flow Silica-Titania Reactor for the Simultaneous Treatment of Air and Water Contaminated with VOCs

2009-07-12
2009-01-2524
The photocatalytic oxidation of VOCs was investigated using a novel countercurrent flow reactor designed to enable the treatment of toluene present in the gas and the aqueous phases simultaneously. The reactor was packed with silica-titania composites commingled with plastic pall rings. Using this mixed packing style was advantageous as it resulted in a higher UV penetration throughout the reactor. The average UV intensity in the reactor was determined to be 220 μW/g irradiated TiO2. It was found that under dry conditions, the STCs had a high adsorption capacity for toluene; however, this adsorption was completely hindered by the wetting of the STCs when the two phases were flowing simultaneously. The destruction of toluene in the aqueous phase was determined to follow a linear trend as a function of the contaminant concentration.
Technical Paper

A Comparison of Spur Gear Response under Non-Ideal Loading Conditions

2009-04-20
2009-01-1258
The current practice of gear design is based on the Lewis bending and Hertzian contact models. The former provides the maximum stress on the gear base, while the latter calculates pressure at the contact point between gear and pinion. Both calculations are obtained at the reference configuration and ideal condition; i.e., zero tolerances. The first purpose of this paper is to compare these two analytical models with the numerical results, in particular, using finite element analysis. It turns out that the estimations from the two analytical equations are closely matched with that from the numerical analysis. The numerical analysis also estimates the variation of contact pressure and bending stress according to the change in the relative position between gear and pinion. It has been shown that both the maximum bending stress and contact pressure occur at non-reference configuration, which should be considered in the calculation of safety factor.
Technical Paper

TiO2 Coated Activated Carbon: A Regenerative Technology for Water Recovery

2002-07-15
2002-01-2357
Two widespread practices in water treatment are, removal of pollutants via adsorption onto activated carbon, and, oxidation of pollutants using a photocatalyst slurry and ultraviolet radiation. The ultimate goal of this research is to combine the adsorptive properties of carbon and the oxidative properties of titanium dioxide (TiO2), and construct a photocatalytically regenerative carbon filter for 100% water recovery. The premise is that the activated carbon, coated with TiO2, will capture the compounds through traditional filtration and adsorption. Once the carbon becomes exhausted, it can be regenerated in-situ by turning on the UV lamps thereby activating the photocatalyst.
Technical Paper

Effect of Photocatalyst Type on Oxidation of Ersatz Water Using a Photocatalytic Reactor with Slurry Separation

2006-07-17
2006-01-2085
Previous work demonstrated that the Photo-Cat® developed by Purifics is capable of reducing the total organic carbon (TOC) concentration of 51 mg/L to below 0.5 ppm using Degussa P25 titanium dioxide (TiO2) as a photocatalyst. The work also showed that ammonium bicarbonate had a detrimental effect on the rate of photocatalytic oxidation, but did not prevent the system from reaching the potable water specification. Nanometer sized Degussa P25 is very popular and quite frequently used as a benchmark of performance in literature, but it may not be the most effective for oxidizing all waste streams. It is critical that each component of the water recovery system be optimized for power consumption and the effectiveness of the photocatalyst plays an important role in accomplishing this.
Technical Paper

Performance of a Magnetically Agitated Photocatalytic Reactor for Oxidation of Ersatz AES Condensate

2006-07-17
2006-01-2084
A magnetically agitated photocatalytic reactor (MAPR) has been developed and tested as a post-processor in the past using phenol and reactive red dye to simulate these waste components, yet these components ignore factors that may hinder a photocatalytic post processor including competitive adsorption of various organic compounds and their oxidation byproducts and the demonstrated detrimental effect of inorganic compounds such as ammonium bicarbonate on photocatalytic oxidation. To assess these effects, this work looks at photocatalytic oxidation of air evaporation subsystem (AES) ersatz water while modifying the photocatalyst mass, magnetic field current and frequency to find the optimal conditions. Additionally, the magnetic photocatalyst has been characterized to observe the assembled structures formed when exposed to the magnetic field array in the MAPR and the crystallinity of the titanium dioxide coating.
Technical Paper

Post-Treatment of Anaerobically Digested Solid Waste in Long Term Space Missions

2006-07-17
2006-01-2258
Post-treatment of anaerobically digested residue produced during long term space missions was investigated. Solid waste was anaerobically digested by employing the SEBAC system. One of the goals of post-treatment step is to convert ammonia in the residue to nitrates via biological nitrification processes. It was found that anaerobically digested residue contained nitrifying microorganisms which could be activated by aeration. Without supplying any external nitrifying inoculum, nitrification was initiated within 2 days by continuously blowing air at 15 ml/min. The maximum rate was 0.78 mg /g dry weight /day. However, denitrification process occurred soon after nitrification and ∼ 50% of nitrate was denitrified. A modified system in which aeration was carried out by holding air within the reactor at a pressure of ∼ 10 psi yielded a higher initial specific nitrification rate of 1.7 mg/g dry weight/day. Moreover, nitrification was initiated within a day.
Technical Paper

Effects of High Productivity Machining on Ti-6Al-4V Surface Topography

2004-09-21
2004-01-2827
Surface defects were demonstrated to result from high productivity machining (HPM) as well as conventional machining of a titanium alloy Ti-6Al-4V, with HPM causing the larger sized defects. These defects could act as initiation sites for fatigue cracks showing that machining would affect fatigue strength and life of the part produced. A finishing pass appears to remove the defects. Better understanding is needed of the relationships between machining, surfaces, and strength.
Journal Article

Predictive Molding of Precision Glass Optics

2009-04-20
2009-01-1199
Precision glass molding process is an attractive approach to manufacture small precision optical lenses in large volume over traditional manufacturing techniques because of its advantages such as low cost, fast time to market and being environment friendly. In this paper, we present a physics-based computational tool that predicts the final geometry of the glass element after molding process using the finite element method. Deformations of both glass and molds are considered at three different stages: heating, molding, and cooling. A 2D axisymmetric finite element model is developed to model the glass molding process. The proposed modeling technique is more efficient than the all-in-one modeling technique. The molds are assumed to be rigid, except for thermal expansion, at all time and glass treated as a flexible body during the compression. Details on identifying material parameters, modeling assumptions, and simplifications are discussed.
X