Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Factors Determining the Octane Number of Alkanes

The relationships between the octane number and the carbon atom number and the molecular structure of alkanes were comprehensively analyzed by using the detailed kinetic model generated by there automatic reaction scheme generation tool, KUCRS [1, 2]. The octane number is an index showing the ignition delay in the engine temperature regime, that is, the engine ignition temperature range. The high octane number is observed in the following two cases; 1 The ignition delay of the low temperature region is large. 2 The ignition delay of the low temperature region is the same, but the transition temperature for NTC (Negative Temperature Coefficient) region is low.
Technical Paper

Classification of the Reactivity of Alkylperoxy Radicals by Using a Steady-State Analysis

To execute the computational fluid dynamics coupling with fuel chemistry in internal combustion engines, simplified chemical kinetic models which capture the low-temperature oxidation kinetics would be required. A steady-state analysis was applied to see the complicated reaction mechanism of alkylperoxy radicals by assuming the steady state for hydroperoxyalkyl (QOOH) and hydroperoxyalkylperoxy (OOQOOH) radicals. This analysis clearly shows the systematic trend of the reaction rate for the chain-branching and non-branching process of alkylperoxy (ROO) radicals as a function of the chain length and the carbon class. These trends make it possible to classify alkylperoxy radicals by their chemical structures, and suggest a reduced low-temperature oxidation chemistry.
Journal Article

Chemical Kinetics Study on Two-Stage Main Heat Release in Ignition Process of Highly Diluted Mixtures

Some experimental data indicate that an HCCI process of a highly diluted mixture is characterized with a two-stage profile of heat release after the heat release by low-temperature oxidation, and with slow CO oxidation into CO₂ at a low temperature. In the present paper, these characteristics are discussed using a detailed chemical kinetic model of normal heptane, and based on an authors' idea that an ignition process can be divided into five phases. The H₂O₂ loop reactions mainly contribute to heat release in a low-temperature region of the TI (thermal ignition) preparation phase. However, H+O₂+M=HO₂+M becomes the main contributor to heat release in a high-temperature region of the TI preparation phase. H₂O₂ is accumulated during the LTO (low-temperature oxidation) and NTC (negative temperature oxidation) phases, and drives the H₂O₂ loop reactions to increase the temperature during the TI preparation phase.
Technical Paper

Reduction of Reaction Mechanism for n-Tridecane Based on Knowledge of Detailed Reaction Paths

n-Tridecane is a low boiling point component of gas oil, and has been used as a single-component fuel for diesel spray and combustion experiments. However, no reduced chemical kinetic mechanisms for n-tridecane have been presented for three-dimensional modeling. A detailed mechanism developed by KUCRS (Knowledge-basing Utilities for Complex Reaction Systems), contains 1493 chemical species and 3641 reactions. Reaction paths during ignition process for n-tridecane in air computed using the detailed mechanism, were analyzed with the equivalence ratio of 0.75 and the initial temperatures of 650 K, 850 K, and 1100 K, which are located in the cool-flame dominant, negative-temperature coefficient, and blue-flame dominant regions, respectively.