Refine Your Search


Search Results

Viewing 1 to 16 of 16
Technical Paper

Experimental Investigation of Tripod Constant Velocity (CV) Joint Friction

Constant Velocity (CV) joints are an integral part of modern vehicles, significantly affecting steering, suspension, and vehicle vibration comfort levels. Each driveshaft comprises of two types of CV joints, namely fixed and plunging types connected via a shaft. The main friction challenges in such CV joints are concerned with plunging CV joints as their function is to compensate for the length changes due to steering motion, wheel bouncing and engine movement. Although CV joints are common in vehicles, there are aspects of their internal friction and contact dynamics that are not fully understood or modeled. Current research works on modeling CV joint effects on vehicle performance assume constant empirical friction coefficient values. Such models, however are not always accurate, especially under dynamic conditions which is the case for CV tripod joints.
Technical Paper

Computational Analysis of Biodiesel Combustion in a Low-Temperature Combustion Engine using Well-Defined Fuel Properties

Biodiesel fuel can be produced from a wide range of source materials that affect the properties of the fuel. The diesel engine has become a highly tuned power source that is sensitive to these properties. The objectives of this research were to measure and predict the key properties of biodiesel produced from a broad range of source materials to be used as inputs for combustion modeling; and second to compare the results of the model with and without the biodiesel fuel definition. Substantial differences in viscosity, surface tension, density and thermal conductivity were obtained relative to reference diesel fuels and among the different source materials. The combustion model revealed differences in the temperature and emissions of biodiesel when compared to reference diesel fuel.
Technical Paper

Continuous Multicomponent Fuel Film Vaporization Model for Multidimensional Engine Modeling

A multicomponent fuel film vaporization model using continuous thermodynamics is developed for multidimensional spray and wall film modeling. The vaporization rate is evaluated using the turbulent boundary-layer assumption and a quasi-steady approximation. Third-order polynomials are used to model the fuel composition profiles and the temperature within the liquid phase in order to predict accurate surface properties that are important for evaluating the mass and moment vaporization rates and heat flux. By this approach, the governing equations for the film are reduced to a set of ordinary differential equations and thus offer a significant reduction in computational cost while maintaining adequate accuracy compared to solving the governing equations for the film directly.
Technical Paper

Analytical Descriptions of Service Loading Suitable for Fatigue Analysis

Service loading histories have the same general character for an individual route and the magnitudes vary from driver to driver. Both the magnitude and character of the loading history change from route to route and a linear scaling of one loading history does not characterize the variability of usage over a wide range of operating conditions. In this paper a technique for measuring and extrapolating cumulative exceedance diagrams to quantify the distribution of service loading in a vehicle is described. Monte Carlo simulations are coupled with the local stress strain approach for fatigue to obtain distributions of service loading. Fatigue life estimates based on the original loading histories are compared to those obtained from statistical descriptions of exceedance diagrams.
Technical Paper

Iced-Airfoil and Wing Aerodynamics

Past research on airfoil and wing aerodynamics in icing are reviewed. This review emphasizes the periods after the 1978 NASA Lewis workshop that initiated the modern icing research program at NASA and the current period after the 1994 ATR accident where aerodynamics research has been more aircraft safety focused. Research pre-1978 is also briefly reviewed. Following this review, our current knowledge of iced airfoil aerodynamics is presented from a flowfield-physics perspective. This section identifies four classes of ice accretions: roughness, rime ice, horn ice, and spanwise ridge ice. In these sections the key flowfield features such as flowfield separation and reattachment are reviewed and how these contribute to the known aerodynamic effects of these ice shapes. Finally Reynolds number and Mach number effects on iced-airfoil aerodynamics are briefly summarized.
Technical Paper

Smart Icing Systems for Aircraft Icing Safety

Aircraft incidents and accidents in icing are often the result of degradation in performance and control. However, current ice sensors measure the amount of ice and not the effect on performance and control. No processed aircraft performance degradation information is available to the pilot. In this paper research is reported on a system to estimate aircraft performance and control changes due to ice, then use this information to automatically operate ice protection systems, provide aircraft envelope protection and, if icing is severe, adapt the flight controls. Key to such a safety system would be he proper communication to, and coordination with, the flight crew. This paper reviews the basic system concept, as well as the research conducted in three critical areas; aerodynamics and flight mechanics, aircraft control and identification, and human factors.
Technical Paper

Biomechanical Realism Versus Algorithmic Efficiency: A Trade-off in Human Motion Simulation Modeling

The purpose this paper is to delineate why there exists a trade-off between biomechanical realism and algorithmic efficiency for human motion simulation models, and to illustrate how empirical human movement data and findings can be integrated with novel modeling techniques to overcome such a realism-efficiency tradeoff. We first review three major classes of biomechanical models for human motion simulation. The review of these models is woven together by a common fundamental problem of redundancy—kinematic and/or muscle redundancy. We describe how this problem is resolved in each class of models, and unveil how the trade-off arises, that is, how the computational demand associated with solving the problem is amplified as a model evolves from small scale to large scale, or from less realism to more realism.
Technical Paper

Performance of Alcohol Blends in Diesel Engines

A normally aspirated, four-stroke diesel engine was tested under operation with two alcohol containing fuel blends. The fuels contained ethanol, butanol, heavy virgin distillate, diesel Nos. 2 and 4, and a cetane improver. The proportions of the components were selected to give blends with properties within the range of diesel No. 2. The final blends contained 25 and 43.7 percent alchohols. Test results showed a loss in power due to the reduced heating value of the blends, and some deterioration of performance at light loads. At intermediate to heavy loads, satisfactory performance was obtained.
Technical Paper

An Experimental and Analytical Study of the Fatigue Life of Weldments with Longitudinal Attachments

Both the experimental results and the analytical predictions of this study confirm that the poor fatigue performance of weldments with longitudinal attachments is due to poor weld quality which in turn leads to either a cold-lap or a very small weld toe radius. as well as to the combination of a very high 3-D stress concentration, and very high tensile residual stresses. Consequently, a specially designed stress-concentration-reducing part termed “stress diffuser” incorporated in the wrap-around welds at the ends of the longitudinal attachments increased the fatigue strength of longitudinal attachments to equal that of transverse attachments but only when cold-laps were eliminated. The fatigue life predictions made using the a two-stage Initiation-Propagation (IP) Model were in good agreement with the experimental results. Procedures for correcting for the curved shape of the crack path are investigated.
Technical Paper

Modeling of Spray Vaporization and Air-Fuel Mixing in Gasoline Direct-Injection Engines

A numerical investigation of air-fuel mixing in gasoline direct-injection (GDI) engines is presented in this paper. The primary goal of this study is to demonstrate the importance of fuel representation. In the past studies, fuel has been usually modeled as a single component substance. However, most fuels are mixtures of hydrocarbons with diverse boiling points, resulting in mixture vaporization behavior substantially different from single-component behavior. This study presents a newly developed multicomponent vaporization model, which takes into account important mechanisms such as preferential vaporization, internal circulation, surface regression, and non-ideal behavior in high-pressure environments. A sheet spray atomization model was also used to calculate the disintegration of the liquid sheet and the breakup of the subsequent droplets. The results of a single-component fuel representation and a multicomponent fuel representation were compared.
Technical Paper

An Empirical Method for Estimating the Fatigue Resistance of Tensile-Shear Spot Welds

An empirical method which is based principally on estimates of the fatigue crack initiation life (NI) has been developed which predicts the fatigue resistance of tensile-shear spot welds in the long life regime. The method uses Basquin’s law and Peterson’s equation to estimate NI and thus is founded on the fatigue behavior of smooth specimens and modelling of the fatigue notch size effect. The fatigue notch factor (Kf) required in this analysis was obtained from Pook’s relationships for the stress intensity factors of tensile-shear spot welds. Estimates of NI are added to estimates of the fatigue crack propagation life NP to obtain the total fatigue life (NT) but in the long life regime NP can usually be neglected. The improvement of tensile-shear spot weld fatigue resistance through manipulation of geometry and material property variables are discussed with the aid of the model.
Technical Paper

A Fatigue Life Prediction Method for Tensile-Shear Spot Welds

An empirical Three Stage Initiation-Propagation (TSIP) model has been developed which predicts the fatigue resistance of tensile-shear spot welds under constant amplitude loading. The improvements of tensile-shear spot weld fatigue resistance caused by changes in weld geometry, residual stresses and material properties variables are discussed with the aid of the model. The TSIP model suggests that, in addition to the influence of geometry, residual stresses at the site of crack initiation greatly influence the fatigue resistance of tensile-shear spot welds. The TSIP model predicts that material properties play a subtle role in determining the fatigue resistance of tensile-shear spot welds.
Technical Paper

The In-Situ Measurement of the Thermal Diffusivity of Combustion Chamber Deposits in Spark Ignition Engines

Combustion chamber deposits in spark ignition engines act as thermal insulators and can lead to octane requirement increase. The thermal properties of deposits are not well documented, the reported thermal diffusivity values vary by two orders of magnitude. Two thermal property measurement techniques were compared, the flash and steady illumination laser methods. The steady laser method was more suitable for deposit property measurement. A comparison was made of the thermal properties of deposits grown with a base fuel with the thermal properties of deposits grown with the base fuel doped with reformer bottoms. For the clean fuel the thermal diffusivity ranged from 3.5 to 3.9-7 m2/s, at various locations around the combustion chamber. For the fuel doped with reformer bottoms the thermal diffusivity ranged from 1.1 to 1.9-7 m2/s at different locations within the combustion chamber.
Technical Paper

High Temperature Cyclic Fatigue Damage Modeling of Alumina

Cyclic loading is not as damaging as static loading of ceramics at high temperatures. Microcrack growth retardation has been established as a mechanism for increasing the durability of ceramics at high temperatures. A combined experimental and theoretical approach provides a mechanistic understanding of the deformation and failure processes in ceramic materials at high temperatures. Results demonstrate that the high temperature behavior of some ceramic material systems are controlled by the behavior of the grain boundary phase whose response is considerably different under static and cyclic loading.
Technical Paper

Analysis of Residual Stresses and Cyclic Deformation for Induction Hardened Components

Induction hardening of mild steel components often results in significant improvements in the static and cyclic load capability, with comparatively small increases in cost. Members subjected primarily to torsional loading are a relevant subset of the broad range of induction hardened components. Due to the variation of material properties and residual stresses, failures are “initiated” at the traditional geometric locations predicted for homogeneous materials and also at subsurface sites. The introduction of shear based fatigue parameters has necessitated the consideration of the residual stress as a three dimensional quantity, especially when analyzing subsurface failures. Not considering the tensoral nature of the residual stress can lead to serious errors when estimating fatigue life, and for larger magnitude loadings, the residual stress field may relax.
Technical Paper

Modeling of Quasi-1D Multi-Component Fuel Droplet Vaporization using Discrete Approach with Experimental Validation

An efficient multi-component fuel droplet vaporization model has been developed in this work using discrete approach. The precise modeling of droplet vaporization process is divided into two parts: vapor-phase and liquid-phase sub-models. Temporal evolution of flow inside the droplet is considered to describe the transient behavior introduced by the slow diffusion process. In order to account for the internal circulation motion, surface regression and finite diffusion without actually resolving the spatial governing equations within the liquid phase, a set of ordinary differential equations is applied to describe the evolution of the non-uniform distributions of universal diffusional variables, i.e. temperature and species mass fraction. The differences between the droplet surface and bulk mean states are modeled by constructing a quasi-1D frame; the effect of the internal circulations is taken into consideration by using the effective diffusivity rather than physical diffusivity.