Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Technical Paper

2000 University of Maryland FutureTruck Design Description

2001-03-05
2001-01-0681
The University of Maryland team converted a model year 2000 Chevrolet Suburban to an ethanol-fueled hybrid-electric vehicle (HEV) and tied for first place overall in the 2000 FutureTruck competition. Competition goals include a two-thirds reduction of greenhouse gas (GHG) emissions, a reduction of exhaust emissions to meet California ultra-low emissions vehicle (ULEV) Tier II standards, and an increase in fuel economy. These goals must be met without compromising the performance, amenities, safety, or ease of manufacture of the stock Suburban. The University of Maryland FutureTruck, Proteus, addresses the competition goals with a powertrain consisting of a General Motors 3.8-L V6 engine, a 75-kW (100 hp) SatCon electric motor, and a 336-V battery pack. Additionally, Proteus incorporates several emissions-reducing and energy-saving modifications; an advanced control strategy that is implemented through use of an on-board computer and an innovative hybrid-electric drive train.
Technical Paper

Towards Optimization of Automotive Waste Heat Recovery Using Thermoelectrics

2001-03-05
2001-01-1021
The potential for thermoelectric power generation via waste heat recovery onboard automobiles to displace alternators and/or provide additional charging to a hybrid vehicle battery pack has increased with recent advances in thermoelectric materials processing. A preliminary design/modeling study was performed to optimize waste heat recovery for power generation using a modified radiator incorporating thermoelectric modules. The optimization incorporates not only thermoelectric performance but also critical systems issues such as accessory power consumption, vehicle drag, and added system weight. Results indicate the effectiveness of the thermoelectric module is extremely sensitive to ambient heat rejection and to the operating temperature range of the thermoelectric device.
Technical Paper

The Excite - The University of Maryland's Pre - Transmission Parallel Hybrid Ford Explorer

2003-03-03
2003-01-1266
The University of Maryland FutureTruck Team has redesigned a 2002 Ford Explorer to function as a charge-sustaining parallel hybrid electric vehicle for the 2002-2003 FutureTruck competition. Dubbed the Excite, it is powered by a dedicated E85 3.0L V6 engine coupled to a 21.6 kW peak (10kW continuous), electric motor using a 144V NiMH battery pack. The philosophy behind the UMD plan is to use a smaller, lightweight, dedicated E85 engine in parallel with an electric motor to provide starting and mild assist capabilities. The engine provides similar power to the stock 4.0 L Explorer engine and the electric motor functions as a starter, an alternator, and assists the engine during high power demands. The combination of the two systems provides the Excite with engine-off-at-idle capability, increased efficiency and fuel economy, and decreased emissions while maintaining the utility of a stock SUV.
Technical Paper

Neural Network Controller Design for a Magnetic Bearing Flywheel Energy Storage System

1992-08-03
929047
The control and analysis of magnetic bearings has been primarily based upon classical linear control theory. This approach does not allow for some important system complexities and nonlinearities to be taken into account. The resulting simplifications degrade the overall system performance. This paper investigates the use of a neural network to control a magnetic bearing flywheel energy storage system. A plant simulation is developed as well as a neural network emulator and controller.
Technical Paper

Computer-Aided Modelling and Analysis of a Magnetic Bearing System

1992-08-03
929045
AMBER (Active Magnetic Bearing Evaluation Routine) is a computer algorithm developed for the University of Maryland pancake magnetic bearing, which supports and controls a flywheel in a kinetic energy storage system. Because of the gap growth due to centrifugal forces at high speed, the bearing axial load capability degrades and the axial characteristics become critical in the bearing design. AMBER applies magnetic circuit theory, magnetic material saturation curves, coenergy theory, and finite permeance-based elements to solve the air gap flux density and coenergy over a series of incremental axial displacements. Differentiation of the coenergy of the magnetic field yields axial force and stiffness characteristics. An axial test machine is constructed to conduct experiments to verify the flux distribution and axial forces predicted by the model. User interaction with AMBER allows modification of the bearing geometry and composition to optimize future prototypes.
Technical Paper

A Preliminary Study of Chemically Enhanced Autoignition in an Internal Combustion Engine

1994-03-01
940758
Chemically enhanced autoignition in a spark-ignited engine with a special design of piston geometry has been observed experimentally, in which the engine would operate stably without a spark, once it is started by spark ignition. Under this operation mode, the engine provides lower pollutant emissions including NOx. In this process, the intermediate species left from the previous cycle play a key role in the low temperature autoignition. The objective of this study is to determine the effect of some important radical and intermediate species, such as HO2, OH, and H2O2, on autoignition by a numerical modeling approach using a detailed chemical kinetic mechanism. The fuel studied is hydrogen. The effect of added HO2, OH and H2O2 on the characteristics of the autoignition of H2-air mixture is investigated. Chemically enhanced autoignition of H2-air in an internal combustion engine is also simulated.
Technical Paper

Experimental Study of CD Variation With Aspect Ratio

1999-03-01
1999-01-0649
There is little information in the technical literature about the dependence of drag coefficient, CD, on aspect ratio (height/width) for car and truck aerodynamics. Some of the information suggests that CD should increase with aspect ratio as the flow over the body becomes more two dimensional. Recent tests of candidate shapes for a commercial van with various roof heights suggested the opposite is true; the taller vans had lower drag coefficients. This report discusses the results of several experimental investigations to examine this relationship. Scale model and production drag measurements of commercial vans are presented along with drag measurements of simple shapes. The shapes consisted of eight radiused rectangular boxes of constant length and frontal area, but with different height/width ratios. The effects of underbody roughness and bumper presence were evaluated and are discussed.
Technical Paper

A 50 Wh Open Core High-Speed Flywheel

1999-08-02
1999-01-2615
In low earth orbit satellite applications, spacecraft power is provided by photovoltaic cells and batteries. Unfortunately, use of batteries present difficulties due to their poor energy density, limited cycle lifetimes, reliability problems, and the difficulty in measuring the state of charge. Flywheel energy storage offers a viable alternative to overcome some of the limitations presented by batteries. FARE, Inc. has built a 50 Wh flywheel energy storage system. This system, called the Open Core Flywheel, is intended to be a prototype energy storage device for low earth orbit satellite applications. To date, the Open Core Flywheel has achieved a rotational speed of 26 krpm under digital control.
Technical Paper

Systematic Modelling and Design of a Battery Pack for Formula Electric Vehicles

2021-04-06
2021-01-0762
This manuscript presents a systematic approach for the design and development of a 403 V, 7 kWh battery pack for a Formula SAE student racing electric car. The pack is made up of 6 individual segments which are connected in series. Each segment has a maximum energy of 1.17 kWh and is made up of 16 arrays connected in series. Each array holds 8 Lithium-ion batteries which are connected in parallel. The overall design of the battery pack is in full compliance with the Formula SAE rules. The manuscript presents the calculation procedure and battery sizing for the power demand of a typical Formula SAE student racing electric car using vehicle dynamics equations. The entire electric traction system is modelled in Matlab/Simulink. The paper also explains the development process of the 7 kWh battery pack and highlights important design considerations, such as busbar sizing.
Journal Article

In-Vehicle Validation of Heavy-Duty Vehicle Fuel Savings via a Hierarchical Predictive Online Controller

2021-04-06
2021-01-0432
This paper presents the evolution of a series of connected, automated vehicle technologies from simulation to in-vehicle validation for the purposes of minimizing the fuel usage of a class-8 heavy duty truck. The results reveal that an online, hierarchical model-predictive control scheme, implemented via the use of extended horizon driver advisories for velocity and gear, achieves fuel savings comparable to predictions from software-in-the-loop (SiL) simulations and engine-in-the-loop (EiL) studies that operated with a greater degree of powertrain and chassis automation. The work of this paper builds on prior work that presented in detail this predictive control scheme that successively optimizes vehicle routing, arrival and departure at signalized intersections, speed trajectory planning, platooning, predictive gear shifting, and engine demand torque shaping.
Technical Paper

Stiffness Coefficients of Heavy Commercial Vehicles

2013-04-08
2013-01-0796
Accident reconstruction specialists have long relied on post-crash deformation and energy equivalence calculations to determine impact severity and the experienced change in velocity during the impact event. In order to utilize post-crash deformation, information must be known about the vehicle's structure and its ability to absorb crash energy. The Federal Motor Vehicle Safety Standards (FMVSS), the New Car Assessment Program (NCAP), and the Insurance Institute of Highway Safety (IIHS), have created databases with crash testing data for a wide range of vehicles. These crash tests allow reconstruction specialists to determine a specific vehicle's ability to absorb energy as well as to generalize the energy absorption characteristics across vehicle classes. These methods are very well publicized.
X