Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

Effects of a Wide Range of Drive Cycles on the Emissions from Vehicles of Three Levels of Technology

1995-02-01
950221
Exhaust emission tests were performed on a fleet of vehicles comprising a range of engine technology from leaded fuel control methods to closed loop three-way catalyst meeting 1992 U.S. standards but marketed in Australia. Each vehicle was tested to 5 different driving cycles including the FTP cycles and steady speed driving. Research had shown that for hot-start operation the major driving pattern parameters which influence fuel consumption and exhaust emissions are average speed and PKE (the positive acceleration kinetic energy per unit distance). Plots from analysis of micro-trip fuel use and emissions rates from the test cycles may be presented as contours in PKE. It follows that the micro trip emissions from a range of driving cycles including, regulated e.g. FTP city and unregulated e.g. LA-92, recently developed EPA cycles or from other cities e.g. Bangkok can be superimposed.
Technical Paper

Factors Influencing Petrol Consumption as Determined from a Survey of the Australian Passenger Car Fleet

1988-03-01
871160
A survey of the on-road petrol consumption of Australian passenger cars provided data which has been analysed for effects on fuel consumption caused by features such as transmission type, vehicle inertia class, engine size, air conditioning presence and vehicle location. Results show that cars with automatic transmissions consistently have higher petrol consumption than manuals for all inertia classes - 15% higher in city conditions and 11% higher in highway conditions. There is also a penalty for automatic transmissions at most engine sizes, although the penalty is relatively larger for smaller engine capacities. Presence of air conditioning was found to increase petrol consumption by 13.5% on average, but the data did not allow the impact of frequency of use to be determined. Coastal driving conditions resulted in petrol consumption being 9.4% higher than for inland conditions, and cars driven in winter had 4.4% greater fuel consumption than cars driven in summer.
Technical Paper

Estimates of the Fuel Consumption and Exhaust Emissions of Light Trucks

1987-11-08
871235
A fleet of 17 utility, van and flat tray bodied trucks has been tested for fuel consumption and exhaust emissions over a range of drive cycles and steady state operating conditions. The influence of vehicle load on the results was included. For each vehicle the tractive force applied by the chassis dynamometer, on which testing was performed, was adjusted to match those found on the road using a new procedure. The fuel consumption results show a downward trend with model year (1.7% annum); about 30% higher petrol use compared with diesel; a cold start penalty of 3 L/100 km and over 2:1 variation for vehicles capable of identical transport task. Exhaust emissions from these rigid trucks were between 3 and 6 times greater than those of the passenger car fleet.
Technical Paper

Turbocharging for the Fuel Efficient Urban Car

1983-11-07
830878
The arguments are given for the use of a 1.3 litre turbocharged spark ignition engine as a substitute for a 2 litre normally aspirated engine for late-80's compact cars. Descriptions of the three stages leading to an optimised engine-turbocharger package are described, together with details of the prototype TC engine manufacture and testing including supercharger tests to define operating limits. An outline of the optimising computer program is given, together with examples of computed camshaft designs giving significantly improved performance at low engine speeds. Some experimental results are given, including those of in-car testing which showed fuel consumption reductions of 12-22% over urban driving cycles.
Technical Paper

Turbocharging for Fuel Efficiency

1983-02-01
830014
The arguments are given for the application of a 1.3 litre turbocharged spark ignition engine, as a substitute for a 2 litre normally aspirated engine as the power plant for a compact-sized car in the late 80’s. Three stages of the project leading to an optimised engine-turbocharger package are outlined. Achievement of Stage 1, leading to evaluation of a non-optimised configuration, will be reported. Description includes the use of a separately driven supercharger to define operating limits in the experimental variable matrix comprising compression ratio, boost pressure, EGR rate and spark retard at the knock limit. Computer programs for the optimising stages of the project are outlined. The current status of the project is reported, where, even at this early stage, fuel consumption reductions of 11-22% have been achieved under simulated urban driving conditions.
Technical Paper

Experimental and Numerical Analysis of Engine Gas Exchange, Combustion and Heat Transfer during Warm-Up

2008-06-23
2008-01-1653
This paper presents experimental and computational results obtained on an in line, six cylinder, naturally aspirated, gasoline engine. Steady state measurements were first collected for a wide range of cam and spark timings versus throttle position and engine speed at part and full load. Simulations were performed by using an engine thermo-fluid model. The model was validated with measured steady state air and fuel flow rates and indicated and brake mean effective pressures. The model provides satisfactory accuracy and demonstrates the ability of the approach to produce fairly accurate steady state maps of BMEP and BSFC. However, results show that three major areas still need development especially at low loads, namely combustion, heat transfer and friction modeling, impacting respectively on IMEP and FMEP computations. Satisfactory measurement of small IMEP and derivation of FMEP at low loads is also a major issue.
Technical Paper

The Always Lean Burn Spark Ignition (ALSI) Engine – Its Performance and Emissions

2009-04-20
2009-01-0932
This paper is based on extensive experimental research with lean burn, high compression ratio engines using LPG, CNG and gasoline fuels. It also builds on recent experience with highly boosted spark ignition gasoline and LPG engines and single cylinder engine research used for model calibration. The final experimental foundation is an evaluation of jet assisted ignition that generally allows a lean mixture shift of more than one unit in lambda with consequential benefits of improved thermal efficiency and close to zero NOx. The capability of an ultra lean burn spark ignition engine is described. The concept is operation at air-fuel ratios similar to the diesel engine but with essentially homogenous charge, although some stratification may be desirable. To achieve high thermal efficiency this engine has optimized compression ratio but with variable valve timing which enables reduction in the effective compression ratio when desirable.
Technical Paper

Comparison of Pfi and Di Superbike Engines

2008-12-02
2008-01-2943
Gasoline Direct Injection (DI) is a technique that was successful in motor sports several decades ago and is now relatively popular in passenger car applications only. DI gasoline fuel injectors have been recently improved considerably, with much higher fuel flow rates and much finer atomization enabled by the advances in fuel pressure and needle actuation. These improved injector performance and the general interest in reducing fuel consumption also in motor sports have made this option interesting again. This paper compares Port Fuel Injection (PFI) and DI of gasoline fuel in a high performance, four cylinder spark ignition engine for super bike racing. Computations are performed with a code for gas exchange, heat transfer and combustion, simulating turbulent combustion and knock.
Technical Paper

Performance Comparison of Engine Down-Sized to High Efficieincy ICEs in Optimized Hybrid Vehicles

2012-04-16
2012-01-1033
A real time energy management (EMS) optimizing algorithm is introduced that performs similar to offline dynamic programming (DP) for parallel HEVs. The EMS and the DP are compared, especially with the addition of a local hill climbing technique, to the example performance prediction of the fuel consumption of a 1.67 tonne large car using a 50 kW Honda Insight engine (representing 65% power reduction from standard) as reference. Then the performance of the vehicle in HEV mode, with a parallel 30 kW motor/generator is examined. The average improvement of this vehicle over five drive cycles from around the world is about 50% reduction in fuel consumption. Next the engine is replaced with an advanced SI turbocharged engine with assisted ignition which returns the performance to that expected of this class of car i.e. 0-100 km/h acceleration time of 7 s. This results in a 14% average reduction in fuel consumption across the five cycles compared with the base Honda engine.
Technical Paper

Comparing the Performance and Limitations of a Downsized Formula SAE Engine in Normally Aspirated, Supercharged and Turbocharged Modes

2006-11-13
2006-32-0072
This paper compares the performance of a small two cylinder, 430 cm3 engine which has been tested in a variety of normally aspirated (NA) and forced induction modes on 98-RON pump gasoline. These modes are defined by variations in the induction system and associated compression ratio (CR) alterations needed to avoid knock and maximize volumetric efficiency (ηVOL). These modes included: (A) NA with carburetion (B) NA with port fuel injection (PFI) (C) Mildly Supercharged (SC) with PFI (D) Highly Turbocharged (TC) with PFI The results have significant relevance in defining the limitations for small downsized spark ignition (SI) engines, with power increases needed via intake boosting to compensate for the reduced swept volume. Performance is compared in the varying modes with comparisons of brake mean effective pressure (BMEP), brake power, ηVOL, brake specific fuel consumption (BSFC) and brake thermal efficiency (ηTH).
Technical Paper

The Systematic Evaluation of Twelve LP Gas Fuels for Emissions and Fuel Consumption

2000-06-19
2000-01-1867
The effects on bi-fuel car exhaust emissions, fuel consumption and acceleration performance of a range of LPG fuels has been determined. The LPGs tested included those representing natural gas condensate and oil refineries' products to include a spectrum of C3:C4 and paraffiinic:olefinic mixtures. The overall conclusions are that exhaust emissions from the gaseous fuels for the three-way catalyst equipped cars tested were lower than for gasoline. For all the LPGs, CO2 equivalent emissions are reduced by 7% to 10% or more compared with gasoline. The cars' acceleration performance indicates that there was no sacrifice in acceleration times to various speeds, with any gaseous fuel in these OEM developed cars.
Technical Paper

Compression Ratio Effects on Performance, Efficiency, Emissions and Combustion in a Carbureted and PFI Small Engine

2007-08-05
2007-01-3623
This paper compares the performance, efficiency, emissions and combustion parameters of a prototype two cylinder 430 cm3 engine which has been tested in a variety of normally aspirated (NA) modes with compression ratio (CR) variations. Experiments were completed using 98-RON pump gasoline with modes defined by alterations to the induction system, which included carburetion and port fuel injection (PFI). The results from this paper provide some insight into the CR effects for small NA spark ignition (SI) engines. This information provides future direction for the development of smaller engines as engine downsizing grows in popularity due to rising oil prices and recent carbon dioxide (CO2) emission regulations. Results are displayed in the engine speed, manifold absolute pressure (MAP) and CR domains, with engine speeds exceeding 10000 rev/min and CRs ranging from 9 to 13. Combustion analysis is also included, allowing mass fraction burn (MFB) comparison.
Technical Paper

Optimized Design of a Cyclic Variability Constrained Lean Limit SI Engine at Optimum NOx and Efficiency Using a PSO Algorithm

2007-08-05
2007-01-3551
In recent times new tools have emerged to aid the optimization of engine design. The particle swarm optimizer, used here is one of these tools. However, applying it to the optimization of the S.I. engine for high efficiency and low NOx emission has shown the preference of ultra lean burn strategy combined with high compression ratios. For combined power, efficiency and emissions benefits, there are two restricting factors, limiting the applicability of this strategy, knocking and cyclic variability. In the ultra lean region, knocking is not an important issue but the variability is a major concern. This paper demonstrates the application of a variability model to limit the search domain for the optimization program. The results show that variability constrains the possible gains in fuel consumption and emission reduction, through optimizing cam phasing, mixture and spark timing. The fuel consumption gain is reduced by about 11% relative.
Technical Paper

Joint Efficiency and NOx Optimization Using a PSO Algorithm

2006-04-03
2006-01-1109
The challenge of tough fuel consumption reduction targets and near zero NOx emission standards can be met by optimization of the full range of engine design variables. Here these are explored through an engine simulation model and the application of an optimizing algorithm that can work in discontinuous data space. The combustion model has main features that include flame propagation, the effects of turbulence, chamber shape interaction and NOx formation. Two engine configurations are used to illustrate the application of the model and optimizer. Both allow the adoption of extra lean burn possible with LPG as fuel and EGR through an external route or cam phasing. In the first the compression ratio and cam profiles are fixed, in the second study they are also optimized.
Technical Paper

The Feasibility of Downsizing a 1.25 Liter Normally Aspirated Engine to a 0.43 Liter Highly Turbocharged Engine

2007-09-16
2007-24-0083
In this paper, performance, efficiency and emission experimental results are presented from a prototype 434 cm3, highly turbocharged (TC), two cylinder engine with brake power limited to approximately 60 kW. These results are compared to current small engines found in today's automobile marketplace. A normally aspirated (NA) 1.25 liter, four cylinder, modern production engine with similar brake power output is used for comparison. Results illustrate the potential for downsized engines to significantly reduce fuel consumption while still maintaining engine performance. This has advantages in reducing vehicle running costs together with meeting tighter carbon dioxide (CO2) emission standards. Experimental results highlight the performance potential of smaller engines with intake boosting. This is demonstrated with the test engine achieving 25 bar brake mean effective pressure (BMEP).
Journal Article

Development of a Direct Injection High Efficiency Liquid Phase LPG Spark Ignition Engine

2009-06-15
2009-01-1881
Direct Injection (DI) is believed to be one of the key strategies for maximizing the thermal efficiency of Spark Ignition (SI) engines and meet the ever-tightening emissions regulations. This paper explores the use of Liquefied Petroleum Gas (LPG) liquid phase fuel in a 1.5 liter SI four cylinder gasoline engine with double over head camshafts, four valves per cylinder, and centrally located DI injector. The DI injector is a high pressure, fast actuating injector enabling precise multiple injections of the finely atomized fuel sprays. With DI technology, the injection timing can be set to avoid fuel bypassing the engine during valve overlap into the exhaust system prior to combustion. The fuel vaporization associated with DI reduces combustion chamber and charge temperatures, thereby reducing the tendency for knocking. Fuel atomization quality supports an efficient combustion process.
X