Refine Your Search

Topic

Author

Search Results

Journal Article

Subjective and Objective Effects of Driving with LED Headlamps

2014-04-01
2014-01-1985
This study was designed to investigate how the spectral power distribution (SPD) of LED headlamps (including correlated color temperature, CCT) affects both objective driving performance and subjective responses of drivers. The results of this study are not intended to be the only considerations used in choosing SPD, but rather to be used along with results on how SPD affects other considerations, including visibility and glare. Twenty-five subjects each drove 5 different headlamps on each of 5 experimental vehicles. Subjects included both males and females, in older (64 to 85) and younger (20 to 32) groups. The 5 headlamps included current tungsten-halogen (TH) and high-intensity discharge (HID) lamps, along with three experimental LED lamps, with CCTs of approximately 4500, 5500, and 6500 K. Driving was done at night on public roads, over a 21.5-km route that was selected to include a variety of road types.
Journal Article

Characterizing Factors Influencing SI Engine Transient Fuel Consumption for Vehicle Simulation in ALPHA

2017-03-28
2017-01-0533
The U.S. Environmental Protection Agency’s (EPA’s) Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created to estimate greenhouse gas (GHG) emissions from light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types with different powertrain technologies, showing realistic vehicle behavior, and auditing of all energy flows in the model. In preparation for the midterm evaluation (MTE) of the 2017-2025 light-duty GHG emissions rule, ALPHA has been refined and revalidated using newly acquired data from model year 2013-2016 engines and vehicles. The robustness of EPA’s vehicle and engine testing for the MTE coupled with further validation of the ALPHA model has highlighted some areas where additional data can be used to add fidelity to the engine model within ALPHA.
Journal Article

Three-Dimensional Three-Component Air Flow Visualization in a Steady-State Engine Flow Bench Using a Plenoptic Camera

2017-03-28
2017-01-0614
Plenoptic particle tracking velocimetry (PTV) shows great potential for three-dimensional, three-component (3D3C) flow measurement with a simple single-camera setup. It is therefore especially promising for applications in systems with limited optical access, such as internal combustion engines. The 3D visualization of a plenoptic imaging system is achieved by inserting a micro-lens array directly anterior to the camera sensor. The depth is calculated from reconstruction of the resulting multi-angle view sub-images. With the present study, we demonstrate the application of a plenoptic system for 3D3C PTV measurement of engine-like air flow in a steady-state engine flow bench. This system consists of a plenoptic camera and a dual-cavity pulsed laser. The accuracy of the plenoptic PTV system was assessed using a dot target moved by a known displacement between two PTV frames.
Journal Article

Assessing a Hybrid Supercharged Engine for Diluted Combustion Using a Dynamic Drive Cycle Simulation

2018-04-03
2018-01-0969
This study uses full drive cycle simulation to compare the fuel consumption of a vehicle with a turbocharged (TC) engine to the same vehicle with an alternative boosting technology, namely, a hybrid supercharger, in which a planetary gear mechanism governs the power split to the supercharger between the crankshaft and a 48 V 5 kW electric motor. Conventional mechanically driven superchargers or electric superchargers have been proposed to improve the dynamic response of boosted engines, but their projected fuel efficiency benefit depends heavily on the engine transient response and driver/cycle aggressiveness. The fuel consumption benefits depend on the closed-loop engine responsiveness, the control tuning, and the torque reserve needed for each technology. To perform drive cycle analyses, a control strategy is designed that minimizes the boost reserve and employs high rates of combustion dilution via exhaust gas recirculation (EGR).
Journal Article

Vehicle and Drive Cycle Simulation of a Vacuum Insulated Catalytic Converter

2016-04-05
2016-01-0967
A GT-SUITE vehicle-aftertreatment model has been developed to examine the cold-start emissions reduction capabilities of a Vacuum Insulated Catalytic Converter (VICC). This converter features a thermal management system to maintain the catalyst monolith above its light-off temperature between trips so that most of a vehicle’s cold-start exhaust emissions are avoided. The VICC thermal management system uses vacuum insulation around the monoliths. To further boost its heat retention capacity, a metal phase-change material (PCM) is packaged between the monoliths and vacuum insulation. To prevent overheating of the converter during periods of long, heavy engine use, a few grams of metal hydride charged with hydrogen are attached to the hot side of the vacuum insulation. The GT-SUITE model successfully incorporated the transient heat transfer effects of the PCM using the effective heat capacity method.
Technical Paper

Minimization of Electric Heating of the Traction Induction Machine Rotor

2020-04-14
2020-01-0562
The article solves the problem of reducing electric power losses of the traction induction machine rotor to prevent its overheating in nominal and high-load modes. Electric losses of the rotor power are optimized by the stabilization of the main magnetic flow of the electric machine at a nominal level with the amplitude-frequency control in a wide range of speeds and increased loads. The quasi-independent excitation of the induction machine allows us to increase the rigidity of mechanical characteristics, decrease the rotor slip at nominal loads and overloads and significantly decrease electrical losses in the rotor as compared to other control methods. The article considers the technology of converting the power of individual phases into a single energy flow using a three-phase electric machine equivalent circuit and obtaining an energy model in the form of equations of instantaneous active and reactive power balance.
Technical Paper

Energy, Fuels, and Cost Analyses for the M1A2 Tank: A Weight Reduction Case Study

2020-04-14
2020-01-0173
Reducing the weight of the M1A2 tank by lightweighting hull, suspension, and track results in 5.1%, 1.3%, and 0.6% tank mass reductions, respectively. The impact of retrofitting with lightweight components is evaluated through primary energy demand (PED), cost, and fuel consumption (FC). Life cycle stages included are preproduction (design, prototype, and testing), material production, part fabrication, and operation. Metrics for lightweight components are expressed as ratios comparing lightweighted and unmodified tanks. Army-defined drive cycles were employed and an FC vs. mass elasticity of 0.55 was used. Depending on the distance traveled, cost to retrofit and operate a tank with a lightweighted hull is 3.5 to 19 times the cost for just operating an unmodified tank over the same distance. PED values for the lightweight hull are 1.1 to 2 times the unmodified tank. Cost and PED ratios decrease with increasing distance.
Journal Article

Front Rail Crashworthiness Design for Front Oblique Impact Using a Magic Cube Approach

2013-04-08
2013-01-0651
The front rail, as one main energy absorption component of vehicle front structures, should present steady progressive collapse along its axis and avoid bending collapse during the front oblique impact, but when the angle of loading direction is larger than some critical angle, it will appear bending collapse causing reduced capability of crash energy absorption. This paper is concerned with crashworthiness design of the front rail on a vehicle chassis frame structure considering uncertain crash directions. The objective is to improve the crash direction adaptability of the front rail, without deteriorating the vehicle's crashworthiness performance. Magic Cube (MQ) approach, a systematic design approach, is conducted to analyze the design problem. By applying Space Decomposition of MQ, an equivalent model of the vehicle chassis frame is generated, which simplifies the design problem.
Technical Paper

Combining Energy Boundary Element with Energy Finite Element Simulations for Vehicle Airborne Noise Predictions

2008-04-14
2008-01-0269
The Energy Boundary Element Analysis (EBEA) has been utilized in the past for computing the exterior acoustic field at high frequencies (above ∼400Hz) around vehicle structures and numerical results have been compared successfully to test data [1, 2 and 3]. The Energy Finite Element Analysis (EFEA) has been developed for computing the structural vibration of complex structures at high frequencies and validations have been presented in previous publications [4, 5]. In this paper the EBEA is utilized for computing the acoustic field around a vehicle structure due to external acoustic noise sources. The computed exterior acoustic field comprises the excitation for the EFEA analysis. Appropriate loading functions have been developed for representing the exterior acoustic loading in the EFEA simulations, and a formulation has been developed for considering the acoustic treatment applied on the interior side of structural panels.
Technical Paper

Off-road Vehicle Dynamic Simulation Based on Slip-Shifted On-road Tire Handling Model

2008-04-14
2008-01-0771
In this research, off-road vehicle simulation is performed with tire-soil interaction model. The predictive semi-analytical model, which is originally developed for tire-snow interaction model by Lee [4], is applied as a tire-soil interaction model and is implemented to MSC/ADAMS, commercial multi-body dynamic software. It is applied to simulate the handling maneuver of military vehicle HMMWV. Two cases are simulated with Michigan sandy loam soil property. Each case has two maneuvers, straight-line brake and step steer (J-turn). First, tire-soil interaction model and conventional on-road tire model are simulated on the flat road of the same frictional coefficient. The proposed tire-soil interaction model provided larger force under the same slip. Second, the same maneuvers are performed with real off-road frictional coefficient. The proposed tire-soil model can be validated and the behavior of the off-road vehicle can be identified through two simulation cases.
Technical Paper

Interior Aircraft Noise Computations due to TBL Excitation using the Energy Finite Element Analysis

2009-05-19
2009-01-2248
The Energy Finite Element Analysis (EFEA) has been developed for evaluating the vibro-acoustic behavior of complex systems. In the past EFEA results have been compared successfully to measured data for Naval, automotive, and aircraft systems. The main objective of this paper is to present information about the process of developing EFEA models for two configurations of a business jet, performing analysis for computing the vibration and the interior noise induced from exterior turbulent boundary layer excitation, and discussing the correlation between test data and simulation results. The structural EFEA model is generated from an existing finite element model used for stress analysis during the aircraft design process. Structural elements used in the finite element model for representing the complete complex aircraft structure become part of the EFEA structural model.
Technical Paper

Numerical Modeling and Simulation of the Vehicle Cooling System for a Heavy Duty Series Hybrid Electric Vehicle

2008-10-06
2008-01-2421
The cooling system of Series Hybrid Electric Vehicles (SHEVs) is more complicated than that of conventional vehicles due to additional components and various cooling requirements of different components. In this study, a numerical model of the cooling system for a SHEV is developed to investigate the thermal responses and power consumptions of the cooling system. The model is created for a virtual heavy duty tracked SHEV. The powertrain system of the vehicle is also modeled with Vehicle-Engine SIMulation (VESIM) previously developed by the Automotive Research Center at the University of Michigan. VESIM is used for the simulation of powertrain system behaviors under three severe driving conditions and during a realistic driving cycle. The output data from VESIM are fed into the cooling system simulation to provide the operating conditions of powertrain components.
Technical Paper

Detection of Ice on Aircraft Tail Surfaces

2003-06-16
2003-01-2112
A method is presented here that detects aircraft tail surface icing that might normally be unobserved by the flight crew. Such icing can be detected through the action of highly computationally efficient signal processing of existing sensor signals using a so-called failure detection filter (FDF). The FDF creates a unique output signature permitting relatively early detection of tail surface icing. The FDF incorporates a stable state estimator from which the icing signature is created. This estimator is robust to analytical modeling errors or uncertainties, and to process noise (e.g. turbulence). Excellent performance of the method is demonstrated via simulation.
Technical Paper

Assessing the Validity of Kinematically Generated Reach Envelopes for Simulations of Vehicle Operators

2003-06-17
2003-01-2216
Assessments of reach capability using human figure models are commonly performed by exercising each joint of a kinematic chain, terminating in the hand, through the associated ranges of motion. The result is a reach envelope determined entirely by the segment lengths, joint degrees of freedom, and joint ranges of motion. In this paper, the validity of this approach is assessed by comparing the reach envelopes obtained by this method to those obtained in a laboratory study of men and women. Figures were created in the Jack human modeling software to represent the kinematic linkages of participants in the laboratory study. Maximum reach was predicted using the software's kinematic reach-envelope generation methods and by interactive manipulation. Predictions were compared to maximum reach envelopes obtained experimentally. The findings indicate that several changes to the normal procedures for obtaining maximum reach envelopes for seated tasks are needed.
Technical Paper

Experimental Investigation of the Flow Around a Generic SUV

2004-03-08
2004-01-0228
The results of an experimental investigation of the flow in the near wake of a generic Sport Utility Vehicle (SUV) model are presented. The main goals of the study are to gain a better understanding of the external aerodynamics of SUVs, and to obtain a comprehensive experimental database that can be used as a benchmark to validate math-based CFD simulations for external aerodynamics. Data obtained in this study include the instantaneous and mean pressures, as well as mean velocities and turbulent quantities at various locations in the near wake. Mean pressure coefficients on the base of the SUV model vary from −0.23 to −0.1. The spectrum of the pressure coefficient fluctuation at the base of the model has a weak peak at a Strouhal number of 0.07. PIV measurements show a complex three-dimensional recirculation region behind the model of length approximately 1.2 times the width of the model.
Technical Paper

First Order Analysis for Automotive Body Structure Design-Part 2: Joint Analysis Considering Nonlinear Behavior

2004-03-08
2004-01-1659
We have developed new CAE tools in the concept design process based on First Order Analysis (FOA). Joints are often modeled by rotational spring elements. However, it is very difficult to obtain good accuracy. We think that one of the reasons is the influence of the nonlinear behavior due to local elastic buckling. Automotive body structures have the possibility of causing local buckling since they are constructed by thin walled cross sections. In this paper we focus on this behavior. First of all, we present the concept of joint analysis in FOA, using global-local analysis. After that, we research nonlinear behavior in order to construct an accurate joint reduced model. (1) The influence of local buckling is shown using uniform beams. (2) Stiffness decrease of joints due to a local buckling is shown. (3) The way of treating joint modeling considering nonlinear behavior is proposed.
Technical Paper

A Dual-Use Enterprise Context for Vehicle Design and Technology Valuation

2004-03-08
2004-01-1588
Developing a new technology requires decision-makers to understand the technology's implications on an organization's objectives, which depend on user needs targeted by the technology. If these needs are common between two organizations, collaboration could result in more efficient technology development. For hybrid truck design, both commercial manufacturers and the military have similar performance needs. As the new technology penetrates the truck market, the commercial enterprise must quantify how the hybrid's superior fuel efficiency will impact consumer purchasing and, thus, future enterprise profits. The Army is also interested in hybrid technology as it continues its transformation to a more fuel-efficient force. Despite having different objectives, maximizing profit and battlefield performance, respectively, the commercial enterprise and Army can take advantage of their mutual needs.
Technical Paper

Design Optimization of Vehicle Structures for Crashworthiness via Equivalent Mechanism Approximations

2004-03-08
2004-01-1731
A new method for crashworthiness optimization of vehicle structures is presented, where an early design exploration is done by the optimization of an equivalent mechanism approximating a vehicle structure. An equivalent mechanism (EM) is a network of rigid bodies connected by prismatic and revolute joints with special nonlinear springs. These springs are designed to mimic the force-displacement characteristics of thin-walled beams often found in the vehicle body structures. A computer software is implemented that allows the designer to quickly construct an equivalent mechanism model of a structure using a graphical user interface (GUI) to optimize the model for given objectives prior to final tuning using finite element (FE) models. A case study of a vehicle front substructure consisting of mid and lower rails is presented, which demonstrates that the new approach can obtain a better design with less computational resources than the direct optimization of a FE model.
Technical Paper

Analysis of FEM Results Based upon FOA

2004-03-08
2004-01-1729
In FOA (First Order Analysis) any vehicle body structure might be interpreted as a collective simple structure that can be decomposed into 3 fundamental structure types. The first structure is the “BEAM”, whose cross sectional properties as well as its material dominates the mechanical behavior, the second is the “PANEL (shear panel, plate, and shell)”, whose mechanical behavior can be varied by changing its geometrical properties in the thickness direction, i.e. adding beads or flanges. The third structure is the “JOINT”, which connects the proceeding structures, and transfer complex three-dimensional loads with three-dimensional deformation. In the present work, we shall propose a methodology to identify a portion of an arbitrary FE model of an automotive body structure, with a “BEAM” structure in the FOA approach. In the latter chapter of this paper, cross section loads will be related with cross sectional properties in the aspect of the element strain energy concept.
Technical Paper

Near-Term Fuel Economy Potential for Light-Duty Trucks

2002-06-03
2002-01-1900
This paper assesses the technical potential, costs and benefits of improving the fuel economy of light-duty trucks over the next five to ten years in the United States using conventional technologies. We offer an in-depth analysis of several technology packages based on a detailed vehicle system modeling approach. Results are provided for fuel economy, cost, oil savings and reductions in greenhouse gas emissions. We examine a range of refinements to body, powertrain and electrical systems, reflecting current best practice and emerging technologies such as lightweight materials, high-efficiency IC engines, integrated starter-generator, 42 volt electrical system and advanced transmission. In this paper, multiple technological pathways are identified to significantly improve fleet average light-duty-truck fuel economy to 27.0 MPG or higher with net savings to consumers.
X